FVM Learning

Nosso maior compromisso é compartilhar conhecimentos, somos simples mas não simplórios, astuto mas não pacóvio, nos posicionamos empenhados em mostrar o caminho para desmistificação do opróbrio em legítima defesa do conhecimento compartilhado. Eng. Jemerson Marques.

terça-feira, 12 de outubro de 2021

Controlando Cargas Através do Serial Monitor com Arduino ou ESP

Fig. 1 - Controlando Cargas Através do Serial Monitor com Arduino ou ESP

Olá a Todos!

No post de hoje, iremos fazer um controle de Cargas, através do Serial Monitor da IDE Arduino, utilizando a função digitalReadString(), que receberá a String que voce digitar no Serial Monitor, para acionar uma carga que iremos utilizar um LED para exemplificar. 

Mas nada impede que você possa utilizar um módulo Relé para acionar qualquer carga, como; Motor, Lâmpadas, Equipamento de som ou qualquer outra coisa que você necessite. 

Quando temos um Arduino ou mesmo um ESP conectado ao PC, com o Serial Monitor, podemos enviar uma String com o comando, que em nosso exemplo será Ligar LED e Desligar LED, como isso o Arduino receberá essa String de comando e acionará o LED.

Hardware necessário

  • Placa Arduino
  • LED - Resistor de Diodo Emissor de Luz 220 Ohm - (vermelho, vermelho, marrom, dourado)
  • Fios de ligação
  • Protoboard (opcional)

O circuito

O circuito é bastante simples. Conectamos um LED em série com um resistor de 220 ohms para limitar a corrente no LED e conectamos a porta 9 do Arduino UNO conforme mostrado na Figura 2 abaixo.

Fig. 2 -  Controlando Cargas Através do Serial Monitor com Arduino ou ESP 


Foi utilizada uma protoboard para facilitar as conexões, mas você também pode conectar os fios diretamente ao Arduino.

O código

A função Serial.readString() é a responsável por lê os caracteres do buffer serial e os move para uma determinada string.

No nosso exemplo, iremos fazer algo muito simples, que é ligar e desligar um LED usando o comando digitado no Serial Monitor.

Depois de construir o circuito, conecte sua placa Arduino ao seu computador, execute o software Arduino (IDE), copie o código abaixo e cole-o em seu IDE Arduino.

Esse algoritmo foi retirado como exemplo de uma das aulas do Curso Básico de Arduino do nosso parceiro Electronic Circuits.

Para ficar claro para os mais iniciantes em programação de Arduino, vamos explicar o código linha a linha:
  • Na linha 3, declaramos ledPin associado ao pino digital 9, onde conectamos o LED.

  • Na linha 4, declaramos a String DataIn que receberá os Comandos do Serial Monitor.

  • Na linha 6, entramos na função void setup(). Esta função é lida apenas uma vez quando o Arduino ou o ESP é iniciado.

  • Na linha 7, começamos a comunicação serial declarando a função Serial.begin(). A 115200 bits de dados por segundo, esta é a velocidade na qual seu computador se comunicará com o Arduino Serial.

  • Na linha 8, definimos a porta 9 como a saída, usando a função pinMode();
1
2
3
4
5
6
7
8
9
10
// Controlando Cargas Através do Serial Monitor

int ledPin = 9;                   // LED connected to digital pin 9
String DataIn;                   // String that will receive the commands

void setup() {
  Serial.begin(115200);                 //Begin the Serial Monitor with bounce rate in 115200
  pinMode(ledPin, OUTPUT);      // Set the digital pin as output:
}
//------------------------------------- www.elcircuits.com --------------------------------------------
  • Na linha 11, entramos na função void loop() que faz exatamente o que seu nome sugere, loops consecutivamente.

  • Na linha 12, entramos em uma condicional if, para verificar se o Serial Monitor está disponível, se sim chamamos a próxima função.

  • Na linha 13, chamamos a função Serial.readString() para ler os caracteres do Serial Monitor e enviá-los ao String DataIn.

  • Na linha 15, inserimos uma condicional if, neste caso para comparar se os caracteres são os mesmos que os escritos no Monitor Serial, em nosso exemplo "acender led", se sim ...

  • Na linha 16, entramos na função digitalWrite(), o comando ativa o ledPin para o nível HIGH, ou seja, passa de 0V a 5V, que liga o LED.

  • Na linha 17, inserimos uma condicional if, que compara se os caracteres são os mesmos que os escritos no Monitor Serial, em nosso exemplo "desligar led", se sim ...
  • Na linha 18, entramos na função digitalWrite(), o comando desativa o ledPin para o nível LOW, ou seja, passa de 5V a 0V, que desliga o LED.
1
...
11
12
13
14
15
16
17
18
19
20
21
// Controlando Cargas Através do Serial Monitor

void loop() { // The loop function runs over and over again forever
  if (Serial.available()) {                   // Check if there is any data on the serial monitor
    DataIn = Serial.readString();       // String DataIn receives the data typed in the Serial Monitor
  }
  if (DataIn == "ligar led") {            // Check if the received String is equal to "ligar led"  
    digitalWrite(ledPin, HIGH);        // If yes, the function digitalWrite turn Led ON
  } if (DataIn == "desligar led") {    // Check if the received String is equal to "desligar led" 
    digitalWrite(ledPin, LOW);         // If yes, the function digitalWrite turn Led OFF 
  }
}
//------------------------------------- www.elcircuits.com --------------------------------------------

O código completo é mostrado no esboço abaixo!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// Controlando Cargas Através do Serial Monitor

int ledPin = 9;                   // LED connected to digital pin 9
String DataIn;                   // String that will receive the commands

void setup() {
  Serial.begin(115200);                     //Begin the Serial Monitor with bounce rate in 115200
  pinMode(ledPin, OUTPUT);   
}

void loop() { // The loop function runs over and over again forever
  if (Serial.available()) {                   // Check if there is any data on the serial monitor
    DataIn = Serial.readString();       // String DataIn receives the data typed in the Serial Monitor
  }
  if (DataIn == "turn led on") {            // Check if the received String is equal to "turn led on"  
    digitalWrite(ledPin, HIGH);        // If yes, the function digitalWrite turn Led ON
  } if (DataIn == "desligar led") {    // Check if the received String is equal to "turn led off" 
    digitalWrite(ledPin, LOW);         // If yes, the function digitalWrite turn Led OFF 
  }
}
//------------------------------------- www.elcircuits.com --------------------------------------------

E por hoje é só, espero que tenham gostado!!!

Quaisquer dúvidas, sugestões, correções, por favor, deixe nos comentários abaixo, que em breve estaremos respondendo.

Se inscreva no nosso Blog!!! Click Aqui FVM Learning!!!

Forte abraço.

Deus vos Abençoe

Shalom


terça-feira, 7 de setembro de 2021

Amplificador de potência 4 x 50W, 14.4V com CI TDA7563A + PCI

Fig. 1 - PCI - Amplificador de potência 4 x 50W, 14.4V com CI TDA7563A

Olá a Todos!!!

For English Version, Click Here!!!

]No post de hoje, iremos apresentar o circuito amplificador de alta potência de 200W total nas saídas, e o seu grande trunfo é que, ele trabalha com fonte simples e ainda com 14.4V, o que significa que podemos ligar em uma bateria de 12V de carro, ou moto, ou nobreak, etc. 

Além de tudo ele é um circuito muito fácil de ser construído, pois emprega pouquíssimo componentes externos em sua montagem.

O TDA7563A é um amplificador desenvolvido para aplicações em rádio para carro do tipo Quad Bridge da tecnologia BCD nos encapsulamento Flexiwatt27 e PowerSO36, especialmente projetados para aplicações de rádio de carro.

Graças ao estágio de saída DMOS, o TDA7563A possui uma distorção muito baixa, permitindo um som claro e poderoso. Entre os recursos, seu desempenho superior em eficiência, proveniente do exclusivo sistema interno estrutura, torna o dispositivo mais adequado para simplificar o gerenciamento térmico em conjuntos de alta potência.

Este dispositivo está equipado com uma matriz de diagnóstico completa que comunica o status de cada alto-falante através do barramento I2C.

Características

  • Tecnologia BCD de potência múltipla
  • Estágio de potência de saída MOSFET
  • Saída de energia DMOS
  • Nova tecnologia de alta eficiência (classe SB)
  • Alta capacidade de potência de saída 4x28W / 4Ω @ 14,4V, 1kHz, 10% THD, potência máxima de 4x50W
  • Máxima potência de saída 4x72W / 2Ω
  • Condução completa de barramento I2C:
    • Standby
    • Independente dianteiro/traseiro,  play/mute suavizado
    • Ganho selecionável 26dB / 12dB (para baixo ruído função de saída de linha)
    • Ativar / desativar alta eficiência
    • Diagnóstico digital de barramento I2C (incluindo DC detecção de carga CA)
  • Proteção total contra falhas
  • Detecção de deslocamento DC
  • Quatro proteção independente contra curto-circuito
  • Pino do detector de corte com limiar selecionável (2% / 10%)
  • Pino de  standby/mute
  • Desligamento térmico linear com vários avisos térmicos
  • Proteção ESD
Na figura 2 logo abaixo temos o diagrama esquemático do circuito Amplificador de potência de alta eficiência e podemos acompanhar e analisar toda a simplicidade do circuito, e como podemos ver, é um circuito de fácil montagem, e com poucos componentes externos.
Fig 2 - Amplificador de potência 4 x 50W, 14.4V com CI TDA7563A

Fonte de Alimentação

Esse amplificador é alimentado por uma fonte de alimentação do tipo simples com tensão positiva e negativa, e tem um range de tensão de alimentação que varia com uma tensão mínima de 8V e a tensão máxima de 18V, a tensão típica de trabalho sem estresse do Circuito Integrado é de 14.4V. 

A fonte de alimentação deve ter uma corrente de pelo menos 5 Amperes, para ser utilizado em modo mono, se for montar na versão estéreo, "dois canais", a corrente deverá ser dobrada, e também deve ser dotada de boa filtragem para evitar ripples no sistema, o que pode causar ruídos no amplificador.

A classificação ôhmica de trabalho desse amplificador para atingi sua potência total é de 4, no entanto podemos colocá-lo em 8 ohms, porém  não iremos consegui a potência máxima do amplificador.

Lista de Materiais

  • CI1 ....................... Circuito Integrado TDA7563A
  • C1, C2, C3, C4 .... Capacitores Cerâmico / Poliéster de 220nF
  • C5 ........................ Capacitores 1uF / 63v
  • C6 ........................ Capacitor Eletrolítico 10uF / 63v
  • R1 ........................ Resistores 47K Ohm
  • R2 ........................ Resistor 8K2 ohms
  • R3 ........................ Resistor 4K7 ohms
  • P1 à P9 ................ Conector KF301 Soldável 2 Pinos aparafusável (Opcional)
  • J1 ......................... Barra De Pino Macho soldável 3 Vias 1x3
  • Diversos .............. Dissipador de calor para o CI, fios, conectores, PCI, estanho etc.
Estamos disponibilizando os arquivos contendo a PCI, o Diagrama Esquemático, o PDFGERBER JPG, PNG, e disponibilizando um link direto para download gratuito e em um link direto, "MEGA".

Link direto para download

Clique no link para baixar os arquivos: Layout PCB, PDF, GERBER, JPG

E por hoje é só, espero que tenham gostado!!!

Quaisquer dúvidas, sugestões, correções, por favor, deixe nos comentários abaixo, que em breve estaremos respondendo.

Se inscreva no nosso Blog!!! Click Aqui FVM Learning!!!

Forte abraço.

Deus vos Abençoe

Shalom

sábado, 4 de setembro de 2021

O que é IPTV? Como funciona?


Quando se fala de Streaming Online, logo o que se pensa é em IPTV, mas é importante lembrar que mesmo que IPTV use o protocolo de internet IP, ele não se limita a um sistema de transmissão de TV pela internet, ele também é usada para entrega de mídia em redes corporativas e privadas, porém com garantia de qualidade na entrega.

Estamos sendo levados com o impulsionamento das mudanças de paradigma dos modos tradicionais com que são transmitidas, como o sistema de TV a cabo, ou via satélite, para o streaming baseado na Internet, e o IPTV como sistema tem um papel importante a desempenhar nessa fase de transição.

Vamos entender melhor a arquitetura da IPTV, e seu funcionamento mais detalhado para trazer-nos mais clareza sobre os tipos de serviços de IPTV e o futuro da IPTV.

O que é IPTV?

IPTV refere-se a: "Internet Protocol Television" Televisão Por Protocolo de Internet, é um sistema em que o serviço de TV digital é entregue ao cliente "assinante" por meio de tecnologia de protocolo de Internet através de conexão de banda larga na Internet.

E isso é um pouco diferente dos sistemas de vídeo digital que são acessados por milhões de usuários em todo mundo em sites ou mesmos em aplicativos como YouTube, Netflix, Amazon Video, Vimeo etc. 

Também ao contrário da conexão padrão por cabo ou satélite, na IPTV vários aparelhos de TV podem usar uma única assinatura dentro de uma mesma casa e ainda com a vantagem e a conveniência de poder escolherem os programas que desejam assistir quando e onde quiserem, além de sintonizar qualquer programação na TV ao vivo quando transmitido.

Para entender como a IPTV é diferente da TV tradicional, vamos comparar o modo tradicional de assistir TV com a IPTV.

Como IPTV Funciona?

Os consumidores através de seus aparelhos, solicitam ao servidor de streaming, e recebem programas de TV solicitados, e os conteúdos de vídeo por meio de redes baseadas em protocolo da Internet (IP), em vez de cabos ou satélites para os telespectadores. 

Diferente de conteúdos de transmissão em tempo real por cabo ou satélite, que funcionam permitindo que os usuários "sintonizem" um canal específico no seu aparelho e não conseguem pausar, ou vê-lo novamente aquele mesmo conteúdo, o IPTV pode armazenar programas no servidor no final da transmissão, permitindo aos usuários solicitar conteúdo pela Internet a qualquer momento.

IPTV usa uma rede baseada em protocolo da Internet (IP) para fornecer canais de TV aos decodificadores dos usuários. 

As redes de Internet são diferentes das redes de cabo e satélite porque fornecem conteúdo por meio dos mesmos modelos de comunicação cliente-servidor, que usa IP (Internet Protocol), um protocolo de transporte que é um mecanismo de entrega, e utilizam os mesmos processos de e-mail, sites e outros serviços baseados na Internet. 

Quando o espectador faz uma solicitação para um programa no IPTV através do controle, o vídeo solicitado, vem de diferentes fontes (servidores) e é dividido em pacotes de dados através da Internet. 

O servidor de vídeo transmite o programa para o cliente através de conexão com a Internet, que podem trafegar os dados por meio do cabo de fibra óptica, Rede 4G, Redes cabeadas, etc. que recebe a solicitação e, envia o programa de volta ao cliente.

E por hoje é só, espero que tenham gostado!!!

Qualquer dúvida, digita nos comentários que logos estaremos respondendo.

Se inscreva no nosso Blog!!! Click Aqui FVM Learning!!!

Forte abraço.

Deus vos Abençoe

Shalom


quarta-feira, 7 de julho de 2021

Pinagem - Pinout - Sensor Temperatura e Humidade DHT11 - Características e Especificações

 

Pinagem - Pinout - Sensor Temperatura e Humidade DHT11

Características básica do Sensor DHT11

  • Tipo - MCU (Microcontrolador de Chip Único)
  • Tensão de Alimentação: 3 - 5.5V
  • Corrente de Consumo: Mínimo 0.5mA, Máximo 2.5mA
  • Corrente de Consumo em Standby: Mínimo 100uA, Máximo 150uA
  • Tipo de Comunicação: Serial Interface (Single-Wire Two-Way)
  • Tipo de Sensor de Humidade: Sensor Resistivo
  • Tipo de Sensor de Temperatura: NTC
  • Tipo de Processamento Digital: Microcontrolador de 8-bit
  • Range de temperatura: 20-90%RH 0-50 C°
  • Precisão da Temperatura: ±2C°
  • Precisão da Humidade: ±5%RH
  • Encapsulamento: 4 Pinos
  • Datasheet Completo: DHT11


Se inscreva no nosso Blog!!! Click Aqui FVM Learning!!!

Forte abraço.

Deus vos Abençoe

Shalom

sábado, 26 de junho de 2021

Fonte Simétrica Regulável 1.25V à 47V 6 Amperes com Proteção contra Curto-Circuito + PCI

Fig. 1 - PCI Fonte Simétrica Regulável 1.25V à 47V 6 Amperes com Proteção contra Curto-Circuito

Olá a Todos!!!

No post de hoje, montaremos uma Fonte Simétrica Regulável, que pode variar sua tensão de saída entre 1.25V até 47VBaseado no Circuito Integrado Regulador de tensão Linear LM317HV para tensão positiva e o LM337HV para tensão negativa, que em conjunto com transistores transistores NPN TIP 35C e o transistor PNP TIP36C, entregarão uma corrente de 6 Amperes, em cada saída.   

Introdução

A fonte desse projeto trabalha com os reguladores de tensão LM317HV e o LM337HV, que são reguladores de tensão complementares de 1.5A, e com tensão que variam entre 1.25V à 47V, que trabalhando em conjunto complementarmente, podem nos fornecer tensões positivas e negativas variáveis, o que nos proporciona a possibilidade de fazermos uma fonte simétrica com todas as proteções que um Regulador LM317 e LM337 teem. 

No entanto para quem planeja fazer uma fonte ajustável de bancada, precisa mais que 1.5A que esses reguladores fornecem, foi então que implementamos um booster com os transistores complementares de potência TIP35 e TIP36., trazendo a possibilidade de uma tensão variável com uma ótima corrente de 6 Amperes

Mais ainda assim, ficaríamos com uma fonte boa com tensão variável entre 1.25V à 47V, com corrente de 6A mas sem proteção contra curto circuito. 

Pensando nisso implementamos um par de transistores complementares, em conjunto com um resistor Shunt, que terá a função de cortar a tensão caso haja um curto circuito na saída da fonte, tornando uma fonte completa para bancada.

O Regulador de Tensão LM137HV / LM337HV

Os reguladores LM137HV ou LM337HV são reguladores de alta tensão negativa de 3 terminais ajustáveis, capazes de fornecer mais de -1,5A em uma faixa de tensão de saída de - 1,2V a - 47V

Lembrando que estamos falando dos LM137 e LM337 com a sigla final HV, que significa High Voltage (Alta Voltagem).
 
Esses reguladores são excepcionalmente fáceis de aplicar, exigindo apenas 2 resistores externos para definir a tensão de saída e 1 capacitor de saída para compensação de frequência. Além disso, a série LM137HV apresenta limitação de corrente interna, desligamento térmico e compensação de área segura, tornando-os virtualmente à prova de explosão contra sobrecargas.

Eles teem uma ampla variedade de aplicações, incluindo regulagem local na placa, regulagem de tensão de saída programável ou regulagem de corrente de precisão. 

O Regulador de Tensão LM117HV / LM317HV 

Os reguladores LM117HV ou LM317HV são reguladores de alta tensão Positiva de 3 terminais ajustáveis, capazes de fornecer 1,5 A em uma faixa de tensão de saída de 1.25V a 57V
Lembrando que estamos falando dos LM117 e LM317 com a sigla final HV, que significa High Voltage (Alta Voltagem).
Os reguladores são excepcionalmente fáceis de aplicar, exigindo apenas 2 resistores externos para definir a tensão de saída. 

A limitação de corrente interna e a limitação de energia, juntamente com a limitação térmica, evitam danos devido a sobrecargas ou curtos-circuitos, mesmo se os reguladores não estiverem presos a um dissipador de calor.

Os Transistores de Potência TIP35C e TIP36C

O TIP35C é um transistor Mospec de Alta Potência, do tipo NPN, com capacidade de corrente de coletor de 25A contínuos, fazendo assim o transistor perfeito para esse projeto, com Vce e Vbe, Tensão de Coletor Emissor, e Tensão de Coletor Base, de 100V, vale lembrar que essas configurações referem-se ao TIP35C.

Existe o TIP35 = 40V, o TIP35A = 60V, o TIP35B = 80V e o TIP35C = 100V, então para esse projeto podemos utilizar para maior eficiência, os TIP35C e TIP36C.

O TIP36C é um transistor Mospec de Alta Potência, do Tipo PNP, os demais parâmetros são exatamente "Levando conta que ele é um PNP" iguais, já que eles são complementares.

Como o Circuito Funciona

Após a retificação e filtro que são os primeiros processos básico do circuito, a tensão total vinda do Trafo e sendo retificada entre pelo primeiro bloco inicial que é a de controle de tensão, essa controlada pelo Circuito Integrado LM317 e em espelho "Mesma função, só que de forma negativa". 

O resistor R1 e R2 de 0,12 ohms são resistores que teem a função de Sensor de Carga, recebem a corrente que flui através do circuito, e enquanto essa corrente não atinge a corrente calculada em cima dos resistores R1 e R2, o circuito se comporta como um regulador de tensão normal, pois para pequenas correntes "calculada", não ha queda de tensão no resistor Sensor de Carga, sendo assim o Transistores Boosters TIP36C e TIP35C não são ativados.

Se ha uma aumento de corrente no circuito, a tensão no resistor R1 aumenta, e se essa tensão atingir aproximadamente 0,6V "tensão de corte do transistor", a etapa de potência é ativada e a corrente fluirá através deles.

O Circuito de Proteção

O circuito de proteção contra curto circuito na saída, é formada pelos transistores; Q1 BD140 PNP e o Q2 BD139 NPN, cada um para uma polarização de saída da fonte. 

Eles fazem o controle da corrente máxima "Calculada" que está fixada em 6 Amperes, e em conjunto com os resistores R3 e R4 de 0,12 ohms ambos, funcionam como resistor sensor de corrente, que serve para polarizar os transistores Q1 e Q2, e que dependendo do valor determinado, ele irá delimitar a corrente de saída de todo o circuito seguindo uma simples fórmula da Lei de Ohms, que serve para estipular essa corrente de delimitação.

Formula 1° Lei de Ohm

A 1ª lei de Ohm determina que a diferença de potencial entre dois pontos de um resistor, é proporcional à corrente elétrica estabelecida nele, e a razão entre o potencial elétrico e a corrente elétrica é sempre constante para resistores ôhmicos. A formula é dada por: V = R * I

  • – Tensão ou Potencial Elétrico
  • R – Resistência Elétrica
  • – Corrente Elétrica

Dotado do conhecimento da lei de ohms, podemos agora calcularmos os valores dos resistores Sensor de Carga, que ativa a etapa de potência, e os resistores de polarização dos transistores de proteção, que é o circuito de proteção contra Curto Circuito.

Calculo Resistor de Carga

Em primeiro lugar, temos que saber a corrente do Regulador de tensão LM317, que segundo o datasheet é de 1.5 amperes.

  • LM317HV & LM337HV = 1.5A

Vamos calcular o R1, sabendo-se que o mesmo calculo é feito para o R2. Sabemos que a Lei de ohms nos fornece a seguinte expressão:

  • V = R * I

V =  A tensão de corte dos transistores Q3 & Q4, que segue o mesmo princípio para o conjunto Q5 & Q6, é de 0.6V "Que é a região de corte do Transistor". Vamos chamar Q3 & Q4 de Qeq.

I = É a corrente do CI1 regulador, vamos colocar a corrente de trabalho do CI1 em 300mA, que é igual a 0,300A, com essa corrente não precisaremos colocar dissipador no mesmo.

Então:

  • R1 = Vbe_Qeq / I_CI1
  • R1 = 0,6V / 0,300A
  • R1 = 2 ohms

Calculo Resistor do Circuito Proteção

Do mesmo modo, temos que saber a corrente total da fonte escolhida para que haja um corte nessa região. A nossa fonte é para 6 Amperes.

  • Fonte6A

Vamos calcular o R3, sabendo-se que o mesmo calculo é feito para o R4. Sabemos que a Lei de ohms nos fornece a seguinte expressão:

  • V = R * I

V =  A tensão de corte do transistor Q1, que segue o mesmo princípio para o transistor Q2, é de 0.6V "Que é a região de corte do Transistor".

I = É a corrente total da Fonte, que é 6A.

Então:

  • R1 = Vbe_Q1 / I_Fonte
  • R1 = 0,6V / 6A
  • R1 0,1 ohms

Corrente dos Transistores de Potência

  • Q3 + Q4 = 25A + 25A = 50A
OBS.: Lembrando que a potência dos transistores TIP36Cé de 125W,  isso significa que ele trabalha com corrente de 25A à 5V, lembra da fórmula acima, P=V*I;  
P = 5V * 25A = 125W.

Para esse circuito com tensão máxima de 47V, e os transistores com potência máxima de 125W,  ficamos assim:
Pmax = V * I:
Imax = P / V => Imax = 125W / 47V => Imax =  2.66A
Como são dois transistores em conjunto Imax = 5.32A

Por isso nosso circuito trabalha com dois transistores TIP36C para conseguirmos 6 Amperes na saída.

Na figura 2 temos o diagrama esquemático do circuito fonte ajustável com proteção contra curto-circuito, para que nos acompanha já conhece muito bem esse circuito, o que diferença é justamente a implantação da simetria do circuito e o circuito de proteção, como podemos ver abaixo.
Fig. 2 - Fonte Simétrica Regulável 1.25V à 47V 6 Amperes com Proteção contra Curto-Circuito

O Transformador

O transformador deve ser simétrico, ou seja: "3 Fios". O transformador deve ser capaz de fornecer no mínimo 6A na saída. A tensão do primário, "tensão de entrada" será diacordo com a tensão da sua região; 110V ou 220Vac. O secundário, "a tensão de saída" deve ser de 36 - 0V - 36 Vac

Lista de Material

  • CI1, CI2 ................... Regulador de Tensão LM317HV
  • Q1 ............................ Transistor PNP BD140
  • Q2 ............................ Transistor NPN BD139
  • Q3, Q4 ..................... Transistor de Potência PNP TIP36C
  • Q5, Q6 ..................... Transistor de Potência NPN TIP35C
  • D1 ............................ Ponte Retificadora 50A - KBPC5010
  • D2, D3 ..................... Diodo retificador 1N4007
  • R1, R2  ..................... Resistor 2W / 2Ω
  • R3, R4 ...................... Resistor 5W / 0.1Ω
  • R5, R6 ...................... Resistor 1/8W / 5KΩ
  • R7, R8 ...................... Resistor 1/8W / 120Ω
  • R9, R10, R11, R12 ... Resistor 5W / 0.1Ω
  • C1, C2 ...................... Capacitor eletrolítico 10uF - 63V
  • C3, C4 ...................... Capacitor eletrolítico 1000uF - 63V
  • C5, C6 ...................... Capacitor eletrolítico 5.600uF - 63V 
  • RV1 .......................... Potenciômetro 5KΩ
  • P1, P2 ....................... Conector 3 terminal parafusado 5mm 3 Pinos
  • Outros ...................... Fios, Soldas, pcb, etc.
Estamos dispondo para Download os materiais necessários para quem deseja montar com a PCI - Placa de Circuito Impresso, os arquivos em PNG, PDF e arquivos GERBER para quem deseja enviar para impressão.

Download:


E por hoje é só, espero que tenham gostado!!!

Qualquer dúvida, digita nos comentários que logos estaremos respondendo.

Se inscreva no nosso Blog!!! Click Aqui FVM Learning!!!

Forte abraço.

Deus vos Abençoe

Shalom

sexta-feira, 4 de junho de 2021

Fonte Chaveada SMPS 13.8V 10A com IR2153 e IRF840 + PCI

Fig. 1 - PCI - Fonte SMPS 13.8V com IR2153 e IRF840

Olá a todos!!

No post de hoje, iremos montar um simples circuito fonte chaveada SMPS, baseado no Circuito Integrado IR2153, que é um controlador PWM com apenas 8 Pinos, e com ele podemos facilmente construir uma fonte chaveada não regulada de boa qualidade para aplicações em projetos simples com um bom desempenho e com baixo custo, nesse modelo a fonte de alimentação tem uma saída de 13.8V, que pode ser ajustado através do trimpot RV1, e entrega em sua saída, uma corrente de 10A garantido.

O circuito

O circuito é composto basicamente por 8 etapas fundamentais:
  1. Etapa: Circuito de Proteção: É composta por um Fusível de 5A/250V, que atua se houver uma corrente superior a corrente de ruptura do Fusível, e paralelamente temos também um NTC (Negative Temperature Coefficient), ele é um limitador da corrente de surto, essa mesma topologia pode ser encontrado na maioria das fontes SMPS, tais como fonte de notebook, fontes de PC, AT / ATX de computador, etc.
  2. Etapa: Filtro de Transiente: Essa etapa é composta por um filtro inicial capacitivo que inibe as altas frequências de retornar para rede, ou vice-versa, e logo depois pela bobina filtro de EMI, que servem para atenuar os ruídos de alta frequência.
  3. Etapa: Retificação Primária: Composta pela ponte retificadora D1.
  4. Etapa: Filtro Primário: Composta pelos capacitores C4 e C5.
  5. Etapa: Chaveamento: Composta por Um gerador de PWM, e pelos transistores MOSFETS de potência IRF840.
  6. Etapa: Transformador: O transformador é um Trafo Chopper de alta frequência, e é ele que faz o isolamento e a transformação em alta frequência do sinal gerado pelo conjunto PWM e transistores chaveadores.
  7. Etapa: Retificação Rápida:  Formado pelo diodo D3, esse é um diodo rápido e duplo, já que a frequência oscilada no circuito é bastante alta. 
  8. Etapa: Filtro de saída: Composto pelo indutor L2, e o capacitor C9.

Circuito PWM

A alimentação do CI IR2153 é feita através do resistor de potência de 27K 5W em conjunto com o capacitor C5, no encapsulamento interno desse CI, já existe um diodo Zener de 15.6V, porém a corrente é baixa, então, cuidado para não colocar o resistor R3 com uma resistência menor, pois aumentaria a corrente na entrada do CI, e o Zener poderá se romper e consequentemente queimar o CI.

Uma solução melhorada seria colocar um diodo Zener de 15V para garantir a estabilização da tensão e a proteção do CI, que você pode estar fazendo se desejar.

Se você estiver utilizando o IR2153D, não ha necessidade de se utilizar o diodo D2 que é o FR107 ou BA159,  pois esse CI já tem esse dido internamente, se for o IR2153 "sem a letra D", deixe como está no esquema, "com o diodo D2", 

O diagrama esquemático completo está disposto logo abaixo na figura 2, tanto o diagrama como os materiais estão disponíveis para baixar no link abaixo. 

Figura 2 - Diagrama Esquemático Fonte SMPS 13.8V 10A

Transformador

O transformador TR1 foi pego deu uma fonte de  alimentação ATX de sucata, o modelo é o IE-35A, mas, você pode está utilizando praticamente qualquer modelo de Trafo de fonte ATX.

Não ha necessidade de se fazer o rebobinando do transformador, só deverá ficar atento a Pinagem que iremos utilizar do Trafo, como mostrada na Figura 3 abaixo. 

Fig. 3 - Esquema de ligação do Trafo de fonte ATX


O modelo de Trafo utilizado foi o EI-35A, mas também podemos utilizar qualquer um outro de fontes AT ou ATX que tenham os mesmos padrão, como os modelos EI-33, ER35, TM3341101QCERL35, EI28, etc, como mostrado na Figura 4 abaixo.

Fig. 4 - Transformador de fonte ATX modelo EI-35A

O indutor L1 é o mesmo utilizado na fonte ATX, retiramos e não fizemos alteração nenhuma, e o indutor L2, do filtros de EMI de saída, você também pode está utilizando o da sucata da fonte, mas, se quiser enrolar o seu próprio filtro, podes enrolar em um núcleo Toroidal de ferrite. 

O enrolamento deve ser realizado o enrolamento em núcleos Toroidal, com a bobina utilizando fio de cobre super esmaltado de 0,6 mm com 25 voltas.

Lista de Material
  • CI1 .............. Circuito Integrado IR2153, ou IRF2153 (Ver Texto)
  • Q1, Q2 ........ Transistores Mosfets IRF840
  • R1, R2 ......... Resistor 150k - (marrom, verde, amarelo, ouro) 
  • R3 ................ Resistor 27K 5W – (vermelho, violeta, laranja, ouro)
  • R4 ................ Resistor 8K2 – (cinza, vermelho, vermelho, ouro)
  • R5, R6 ......... Resistor 10Ω – (marrom, preto, preto, ouro)
  • D1 ............... Ponte de Diodos KBU606 (Ou Equivalente) 
  • D2 ............... Diodo Rápido - FR107 ou BA159 (Ou Equivalente)
  • D3 ............... Diodos Rápido MBR3045PT (Ou Equivalente)
  • C1, C2 ........ Capacitor Poliéster 470nF - 400Vac
  • C3, C4 ........ Capacitor eletrolítico 330uF - 200V
  • C5, C7 ........ Capacitor eletrolítico 100uF - 25V
  • C6 ............... Capacitor Poliéster 680pF
  • C8 ............... Capacitor Poliéster 2,2uF - 400V
  • C9 ............... Capacitor eletrolítico 2200uF - 25V
  • RV1 ............ Trimpot 47kΩ
  • NTC1.......... Thermistor 5Ω.
  • L1, L2 ......... Indutor *ver texto
  • TR1 ............ Transformador *ver texto
  • F1  ............... Fusível soldável 5A
  • Outros ......... Fios, Soldas, Placa, Etc.

Estamos disponibilizando os arquivos contendo a PCI, o Diagrama Esquemático, o PDFGERBER JPG, PNG, e disponibilizando um link direto para download gratuito e em um link direto, "MEGA".

Link direto para download

Clique no link para baixar os arquivos: Layout PCB, PDF, GERBER, JPG

E por hoje é só, espero que tenham gostado!!!

Quaisquer dúvidas, sugestões, correções, por favor, deixe nos comentários abaixo, que em breve estaremos respondendo.

Se inscreva no nosso Blog!!! Click Aqui FVM Learning!!!

Forte abraço.

Deus vos Abençoe

Shalom