FVM Learning

Nosso maior compromisso é compartilhar conhecimentos, somos simples mas não simplórios, astuto mas não pacóvio, nos posicionamos empenhados em mostrar o caminho para desmistificação do opróbrio em legítima defesa do conhecimento compartilhado. Eng. Jemerson Marques.
Mostrando postagens com marcador Amplificador com Transistores. Mostrar todas as postagens
Mostrando postagens com marcador Amplificador com Transistores. Mostrar todas as postagens

quarta-feira, 30 de março de 2022

Amplificador de Som de 50W com apenas 4 transistores Fonte simples + PCI

Fig. 1 - Amplificador de Som de 50W com apenas 4 transistores Fonte simples + PCI

Olá a todos!!!

No post de hoje, preparamos para os vocês amantes da eletrônica, um simples amplificador de audio, que utiliza apenas 4 transistores e nos entrega uma potência de 50W RMS, utilizando ainda uma fonte simples ou seja uma fonte unipolar de 40V.
 
Mesmo com sua simplicidade, ele nos entrega uma qualidade muito boa se comparado com os amplificadores mais simples.

Características do Circuito

Digrama Esquemático do Circuito

A disposição do diagrama esquemático está logo abaixo na Figura 2, é um circuito com dificuldades moderada para se montar, no entanto, é necessário conhecimento técnico entre intermediário ao avançado, se você não tem experiências em montagem, chame alguém com mais experiência para te ajudar a montar e depois revisar para verificar se não ha nada invertido.
Fig. 2 - Diagrama Esquemático Amplificador de Som de 50W com apenas 4 transistores Fonte simples

Fonte de Alimentação

A tensão de alimentação do circuito amplificador é de 40 Volts e no máximo de 45 Volts, com corrente de 3 Amperes, e com boa filtragem para evitar "roncos" ou "rams" na saída de som. O amplificador é alimentado por uma fonte do tipo Unipolar, ou seja, não precisa ser do Simétrica

Segue sugestão de uma fonte de alimentação que colocamos em nosso Post anterior a esse, é só clicar no título Fonte de Alimentação, ou no link da Figura 3 abaixo. 
Fig. 3 - Fonte de Alimentação linear unipolar para amplificadores HI-FI 

Lista de Componentes

  • Semicondutores
    • Q1 ................. Transistor BC557
    • Q2 ................. Transistor BC548
    • Q3 ................. Transistor TIP122
    • Q4 ................. Transistor TIP126
    • D1, D2, D3 ... Diodo 1N4007

  • Resistores
    • R1, R2, R4 .... Resistor 100KΩ (marrom, preto, amarelo, dourado
    • R3.................. Resistor 220KΩ (vermelho, vermelho, marrom, dourado)
    • R5, R8 .......... Resistor 2.2KΩ (vermelho, vermelho, vermelho, dourado)
    • R6 ................. Resistor 4,7KΩ (amarelo, roxo, vermelho, dourado)
    • R7 ................. Resistor 10KΩ (marrom, preto, laranja, dourado)
    • R9 ................. Resistor 2,7KΩ (vermelho, roxo, vermelho, dourado)
    • R10 ............... Resistor 82Ω (cinza, vermelho, preto, dourado)
    • R11, R12 ....... Resistor 0.5Ω (amarelo, prata, ouro)
    • R13 ............... Resistor 6,8KΩ (azul, cinza, vermelho, dourado)
    • R14 ............... Resistor 10Ω (marrom, preto, preto, dourado)

  • Capacitores
    • C1 ................. Capacitor Eletrolítico 47μF / 65v
    • C2, C9 .......... Capacitor Polyester / Cerâmico 220nF
    • C3 ................. Capacitor Polyester / Cerâmico 470pF
    • C4 ................. Capacitor eletrolítico 100μF / 65V
    • C5 ................. Capacitor eletrolítico 4.7μF / 65V
    • C6 ................. Capacitor Polyester / Cerâmico 47pF
    • C7 ................. Capacitor Polyester / Cerâmico 10nF
    • C8 ................. Capacitor Eletrolítico 470uF / 65V

  • Diversos
    • P1, P2, P3 ...... Conector WJ2EDGVC-5.08-2P
    • Outros ...........  Placa Circuito Impresso, estanho, fios, etc.

A Placa de Circuito Impresso

Estamos disponibilizando os arquivos contendo a PCI, o Diagrama Esquemático, o PDFGERBER JPG, PNG, e disponibilizando um link direto para download gratuito e em um link direto, "MEGA".
Fig. 4 - PCI Amplificador de Som de 50W com apenas 4 transistores Fonte simples

Link direto para download

Clique no link ao lado para baixar os arquivos: Layout PCB, PDF, GERBER, JPG

Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Quaisquer dúvidas, sugestões, correções, por favor, deixe nos comentários abaixo, que em breve estaremos respondendo.

Se inscreva no nosso BlogClique Aqui FVM Learning!

Forte abraço.

Deus vos Abençoe
Shalom!

domingo, 19 de dezembro de 2021

Amplificador Hi-Fi de Alta Potência 600W com Transistores MJL4281 e MJL4302 + PCI

Fig. 1 - Amplificador Hi-Fi de Alta Potência 600W com Transistores MJL4281 e MJL4302

Olá a Todos!!!

No Post de hoje, iremos montar um circuito Amplificador Hi-Fi de Alta Potência de 600W para versão mono, e 1200w para versão estéreo, com qualidade sonora surpreendente e uma ótima estabilidade.

Esse tipo de amplificador pode ser facilmente utilizado para amplificadores de som em eventos para alimentar um PA, ou como caixa ativa, ou para substituir o circuito de amplificadores antigos por um de melhor potência e qualidade.

Esse amplificador utiliza 6 transistores complementares de alta potência na saída, são transistores desenhados para trabalhar com amplificadores de alto desempenho.

Transistores de Potência de Saída

Os transistores de saída utilizados nesse amplificador são transistores bipolares complementares; NPN MJL4281A e o PNP MJL4302A

Eles são transistores de alto desempenho e de alta potência, com 15 Amperes de corrente, 350 Voltes de tensão entre coletor e emissor e 230W

Só para efeito de comparação com os transistores bastantes utilizados em sistemas de amplificadores de potência os transistores complementares; NPN 2SC5200, e o PNP 2SA1943, são transistores que teem 15 Amperes de corrente, sua tensão de operação coletor emissor 230 Voltes, e a potência de dissipação é de 150W.  

O circuito não é tão simples para quem não tem experiências em eletrônica e em montagem de circuitos amplificadores, é necessário ter um nível conhecimento avançado para montar esse tipo de amplificador de potência.

O diagrama esquemático do circuito completo, está disposto na Figura 2 logo abaixo, é um amplificador bastante robusto, com alto nível de qualidade sonora, e bem estável, respondendo muito bem em todas as frequências audíveis, com poucas atenuações no range completo 20Hz à 20Khz.

Fig. 2 - Circuito Amplificador Hi-Fi de Alta Potência 600W com Transistores MJL4281 e MJL4302

Fonte de Alimentação

A Fonte de Alimentação desse amplificador é Simétrica, com tensão de: +70V 0V -70V, com corrente contínua. 

Sendo assim, devemos utilizar um Transformador com center-tape de 70V - 0 - 70V, com uma corrente de 10 Amperes, para quem vai fazer na versão estéreo, 2 canais, deve-se dobrar a corrente para 20 Amperes.

A fonte de alimentação que utilizamos, foi uma que nós do FVM Learning já postamos por aqui, e ela foi reinscrito por nosso parceiro elcircuits.com para uma maior potência, já que estamos falando de 600W para mono ou 1200W para versão estéreo.

A fonte de alimentação apresentada pelo elcircuits vem com 5 configurações para potência distintas, para quem precisar fazer a fonte que tenha a capacidade para suportar a potência do amplificador, de forma segura e com boa qualidade. 

Na Figura 3 abaixo temos os arquivos da fonte para ser baixados gratuitamente, é só clicar na figura e você será direcionado para a página de Download da Elcircuits

Lista de Material

  • Q1, Q2 ................. Transistor PNP 2N5401
  • Q3, Q4, Q5 .......... Transistor NPN 2N5551
  • Q7 ........................ Transistor PNP MJE350
  • Q8, Q9 ................. Transistor NPP MJE340
  • Q10 ...................... Transistor NPN TIP41C
  • Q11 ...................... Transistor PNP TIP42C
  • Q12, Q13, Q14 .... Transistor de potência NPN MJL4281A 
  • Q15, Q16, Q17 .... Transistor de potência PNP MJL4302A 

  • D1, D2, D3, D4 ... Diodo 1N4007

  • C1, C2 ................ Capacitor eletrolítico 4.7uF - 25V 
  • C3 ...................... Capacitor cerâmico/poliéster 220pF  
  • C4 ...................... Capacitor eletrolítico 47uF - 63V
  • C5 ...................... Capacitor eletrolítico 220uF - 63V
  • C6 ...................... Capacitor cerâmico/poliéster 100pF
  • C7 ...................... Capacitor eletrolítico 1uF - 63V
  • C8, C11, C12 ..... Capacitor cerâmico/poliéster 100nF
  • C9, C10 .............. Capacitor eletrolítico 470uF - 63V

  • R1, R8 ................ Resistor 33K - (laranja, laranja, vermelho, dourado)
  • R2, R3 ................ Resistor 100Ω (marrom, preto, marrom, dourado)
  • R4 ...................... Resistor 56Ω - (verde, azul, preto, dourado)
  • R5 ...................... Resistor 150Ω - (marrom, verde, marrom, dourado)
  • R6, R9 ............... Resistor 10K  - (marrom, preto, laranja, dourado)
  • R7 ...................... Resistor 680Ω - (azul, cinza, marrom, dourado)
  • R10 .................... Resistor 1K - (marrom, preto, vermelho, dourado)
  • R11 .................... Resistor 120Ω - (marrom, vermelho, marrom, dourado)
  • R12 .................... Resistor 1K2 - (marrom, vermelho, vermelho, dourado)
  • R13 .................... Resistor 180Ω - (marrom, cinza, marrom, dourado)
  • R14, R15 ........... Resistor 1Ω - (marrom, preto, dourado, dourado)
  • R16 .................... Resistor 180Ω 1W - (marrom, cinza, marrom, dourado)
  • R17, 18, 19, 20,21,22 ... Resistor 1Ω - (marrom, preto, dourado, dourado)
  • R23 à R28 .......... Resistor 022 ohms - 5W -  (vermelho, vermelho, prata, dourado)
  • R29, R30 ............ Resistor 10Ω / 1W - (marrom, preto, preto, dourado)

  • RP1..................... Trimpot de 1K

  • P1, P2 ................. Conector WJ2EDGVC-5.08-2P
  • P3 ....................... Conector WJ2EDGVC-5.08-3P

  • L1 ....................... Bobina - 5uH - Bobina 10 Espiras 18AWG núcleo 3/8"
  • Outros ................. Placa de Circuito Impresso, Fios, Soldas e Etc.

Na Figura 4 logo abaixo, estamos disponibilizando a PCI Placa de Circuito Impresso, com todos os arquivos necessários em arquivos, GERBER, PDF e JPEG

Para você que deseja fazer a montagem mais otimizada, ou em casa, ou se preferir, em uma empresa que imprima a placa, você pode está baixando os arquivos gratuitamente em um link direto na opção de Download logo abaixo.

Fig. 4 - PCI - Amplificador Hi-Fi de Potência - 600W RMS

Arquivos Para Baixar, Link Direto:

Clique Aqui: 


Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Qualquer dúvida, digita nos comentários que logos estaremos respondendo.
Se inscreva no nosso Blog! Clique aqui - FVM Learning!
Forte abraço.

Deus vos Abençoe
Shalom!

terça-feira, 23 de novembro de 2021

Amplificador de Potência - 600W RMS + PCI

Fig. 1 - PCI - Amplificador de Potência - 600W RMS

Olá a Todos!!!

No Post de hoje, traremos para você, um circuito amplificador de alta potência de 1200W RMS, são 600W por canal, com ótima qualidade sonora e uma ótima estabilidade, tornando perfeito para quem deseja usar esse amplificador de som em eventos para alimentar um PA, ou para substituir o circuito de amplificadores antigos por um de melhor potência e qualidade.

O circuito amplificador utiliza 12 transistores complementares na saída, sendo eles; 6 transistores NPN 2SC5200, e 6 transistores PNP 2SA1943, esses transistores são bastante utilizados em amplificadores de potência, e ja teem eficácia comprovada a bastante tempo, tornando-os bastante populares no mercado.

A alimentação é feita com uma fonte simétrica, com tensão de alimentação simétrica de ±75V, com pelo menos  8 Amperes de corrente, recomendamos 10A.
O circuito não é tão simples para quem não tem experiências em eletrônica e em montagem de circuitos amplificadores, é necessário ter no mínimo conhecimento nível intermediário à avançado para montar esse tipo de amplificador de potência.

O diagrama esquemático do circuito completo, está disposto na Figura 2 logo abaixo, é um amplificador bastante robusto, com ótima qualidade sonora, e bem estável, respondendo muito bem em todas as frequências audíveis, com poucas atenuações no range completo 20Hz à 20Khz.

Fig. 2 - Amplificador de Potência 600W RMS com 2SC2500 e 2SA1943

Fonte de Alimentação

A Fonte de Alimentação desse amplificador é Simétrica, com tensão de: +75V | 0V | -75V, com corrente contínua. 

Sendo assim, devemos utilizar um Transformador com center-tape de 75V - 0 - 75V, com uma corrente de 10 Amperes, para quem vai fazer na versão estéreo, 2 canais, deve-se dobrar a corrente para 20 Amperes.

A fonte de alimentação que utilizamos, foi uma que nós do FVM Learning já postamos por aqui, e ela foi reinscrito por nosso parceiro elcircuits.com para uma maior potência, já que estamos falando de 1200W.

A fonte de alimentação vem com 5 configurações para potência distintas, para quem precisar fazer a fonte que tenha a capacidade para suportar a potência do amplificador, de forma segura e com boa qualidade. 

Na Figura 3 abaixo temos os arquivos da fonte para ser baixados gratuitamente, é só clicar na figura e você será direcionado para a página de Download da Elcircuits

Lista de Material

  • Q1, Q2 ................. Transistor PNP 2SA1015  
  • Q3 ........................ Transistor NPN 2SC1815
  • Q4, Q5 ................. Transistor NPN 2SC2229
  • Q6 ........................ Transistor NPN 2SD712
  • Q7 ........................ Transistor PNP 2SB688
  • Q8 ........................ Transistor PNP TIP42C
  • Q9 à Q14 ............. Transistor de potência NPN 2SC5200
  • Q15 à Q20 ........... Transistor de potência PNP 2SA1943

  • D1, D2, D3 .......... Diodo 1N4007
  • DZ1 ..................... Diodo Zener 1N4749A - 1W, "zener de 24V"

  • C1 ....................... Capacitor eletrolítico 2.2uF - 25V 
  • C2, C3 ................ Capacitor eletrolítico 47uF - 63V
  • C4, C5 ................ Capacitor cerâmico/poliéster 100pF 
  • C6, C7 ................ Capacitor cerâmico/poliéster 470pF
  • C8 ....................... Capacitor cerâmico/poliéster 100nF

  • R1, R8 ................ Resistor 56 K ohms - (verde, azul, laranja, dourado)
  • R2, R5 ................ Resistor 4.7K ohms - (amarelo, violeta, vermelho, dourado)
  • R3 ....................... Resistor 33K ohms - (laranja, laranja, laranja, dourado)
  • R4, R6 ................ Resistor 3.3K ohms - (laranja, laranja, vermelho, dourado)
  • R7 ....................... Resistor 1K ohms - (marrom, preto, vermelho, dourado)
  • R9 ....................... Resistor 10K ohms - (marrom, preto, laranja, dourado)
  • R10, R11, R12 .... Resistor 150 ohms - 1W - (marrom, verde, marrom, dourado)
  • R13 ..................... Resistor 33 ohms - (laranja, laranja, preto, dourado)
  • R14, R15 ............. Resistor 100 ohms - (marrom, preto, marrom, dourado)
  • R16 à R21 ........... Resistor 2.2 ohms - 1W -  (vermelho, vermelho dourado, dourado)
  • R22 à R26 ........... Resistor 022 ohms - 5W -  (vermelho, vermelho, prata, dourado)
  • R28 à R33 ........... Resistor 2.2 ohms - 1W -  (vermelho, vermelho dourado, dourado)
  • R34 à R39 ........... Resistor 022 ohms - 5W -  (vermelho, vermelho, prata, dourado)
  • R40, R41 ............. Resistor 10 ohms - (marrom, preto, preto, dourado)

  • P1, P2 .................. Conector WJ2EDGVC-5.08-2P
  • P3 ........................ Conector WJ2EDGVC-5.08-3P

  • L1 ........................ Bobina - 5uH Núcleo de Ar
  • Outros ................. Placa de Circuito Impresso, Fios, Soldas e Etc.

Na Figura 4 logo abaixo, estamos disponibilizando a PCI Placa de Circuito Impresso, em arquivos GERBER, PDF e JPEG, para você que deseja fazer a montagem mais otimizada, ou em casa, ou se preferir, em uma empresa que imprima a placa, você pode está baixando os arquivos gratuitamente em um link direto na opção de Download logo abaixo.
Fig. 4 - PCI Amplificador de Potência 600W - Configuração dissipador invertido

Arquivos Para Baixar, Link Direto:

Click Aqui: 


Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Qualquer dúvida, digita nos comentários que logos estaremos respondendo.
Se inscreva no nosso Blog! Clique aqui - FVM Learning!
Forte abraço.

Deus vos Abençoe
Shalom!

domingo, 24 de outubro de 2021

Amplificador de Som 140W RMS com Mosfets IRFP240/IRFP9240 + PCI

Fig. 1 - PCB - Amplificador de Audio 140W RMS com Mosfets IRFP240/IRFP9240

Olá a todos!

No post de hoje, iremos apresentar um amplificador de potência que usa dois transistores MOSFETs complementares IRFP240 e IRFP9240 na etapa de potência.

Este amplificador opera com tensão simétrica de +47Vcc | 0V | -47Vcc, e fornece saída de 110W RMS em um alto-falante de 8 ohms, se usado um alto-falante de 4 ohms, a potência de saída será de 160W RMS.

Este amplificador é bastante indicado para  uso como  amplificador de alta qualidade HI-FI, ja que possui um nível de distorção muito baixo, próximo a 0,1% THD, com uma sensibilidade de entrada de 1,2Vrms. Além disso, ele possui uma  largura de banda ampla, que fica entre 10Hz a 22kHz.

Na Figura 2 temos o circuito esquemático completo do amplificador de audio 140W RMS com Mosfets IRFP240 e IRFP9240 de saída.

Fig. 2 - Amplificador de Audio 140W RMS com Mosfets IRFP240/IRFP9240

Como Funciona o Circuito

Esse amplificador está dividido em 3 estágios básico, são eles:
  • Primeiro Estágio: É formado pelo conjunto de; um potenciômetro P1 de 10K, ele é responsável pelo controle de volume, trabalha de forma que, quando há o fechamento total do potenciômetro, ele faz o aterramento de entrada evitando qualquer ruído quando a entrada estiver sem sinal, e quando aberto, ele envia proporcionalmente o sinal de entrada para o capacitor C1.

    O capacitor C1 é o desacoplador, ele tem a função de inibir a tensão CC na entrada do amplificador, esse capacitor é de suma  importância para não haver alteração de polarização na base do transistor Q1.

    O transistores Q1 e Q2 formam o amplificador diferencial, que tem a como principal característica a capacidade de amplificar a diferença dos sinais de entrada sem amplificar o sinal de modo comum.

    Os resistores R5 e R6 são responsáveis por determinar o valor proporcional de amplificação de todo o circuito amplificador. 
  • Segundo Estágio: É formado pelo segundo circuito amplificador diferencial construído pelos transistores Q3 e Q4.

    O transistor Q5 é o circuito de corrente constante para a polarização do MOSFET de saída, pode ser ajustado através do trimpot P2. Isso fará com que os circuitos estejam mais estabilidade.

  • Terceiro Estágio: É o estágio de saída composto pelos transistores Q6 MOSFET IRFP240 e Q7 IRFP9240 que são operados na classe AB. e tem uma boa eficiência, cerca de 78%.

    Os capacitores de rede C6 e R14 são usados para darem maior contexto nas altas frequências e evitar o aumento abrupto das oscilações.

    Para a bobina L1, enrole 10 voltas de fio de cobre esmaltado 18AWG com diâmetro de 3/8" ou 1cm sem núcleo físico.
Para os transistores MOSFETs de saída, é necessário um Dissipador de Calor para dissipar toda temperatura gerada nos transistores de saída, eles devem ter as dimensões médias de 20x10x10 centímetros, já funcionarão muito bem.

Você pode se interessar também!

A Fonte de Alimentação

A fonte de alimentação requerida para esse circuito amplificador de potência de 140 Watts, deve ter ao menos uma potência em conformidade com as dispostas nesse amplificador.

Seguindo a lei de ohms, temos que: A potência é igual a tensão multiplicada pela corrente.
A tensão é de 45V
Potência total é de 140W (em 4R)

Então a corrente calculada é:

  • P = V * I
  • I = P / V
  • I = 140 / 45
  • I = 3.1A
Nesse caso a fonte de alimentação deve ter no mínimo, para esse amplificador "Um Canal", 3.1A, lembrando que estamos falando de fonte de alimentação com Corrente Contínua CC.

Para quem precisar, temos um post com a placa de circuito impresso e tudo mais para quem deseja fazer a sua própria fonte com qualidade e simplicidade, segue o link abaixo.

Lista de Componentes

  • Q1, Q2 .................. Transistor PNP 2SA1016 (ou 2N3906, BC558A733)
  • Q3, Q4 .................. Transistor NPN MJE340
  • Q5 ......................... Transistor PNP MJE350
  • Q6 ......................... Transistor Mosfet Canal N IRFP240 
  • Q7 ......................... Transistor Mosfet Canal P IRF9240

  • D1 ....................... Diodo 1N4007 

  • C1 ....................... Capacitor eletrolítico 2.2uF / 35V
  • C2 ....................... Capacitor eletrolítico 47uF / 35V
  • C3, C4 ................ Capacitor de Cerâmica / Poliéster 33pF
  • C5 ....................... Capacitor de Cerâmica / Poliéster 5.6nF 
  • C6 ....................... Capacitor de Cerâmica / Poliéster 47nF 
  • C7, C8 ................ Capacitor Eletrolítico de 220uF / 65 V
  • C9, C10 .............. Capacitor de Cerâmica / Poliéster 220nF

  • R1 ......................... Resistor de 47 k ohms (amarelo, violeta, laranja, ouro)
  • R2, R4 .................. Resistor de 3.9k ohms (laranja, branco, vermelho, ouro)
  • R3 ......................... Resistor de 56K ohms (verde, azul, laranja, ouro)
  • R5 ......................... Resistor de 1K ohms (marrom, preto, vermelho, ouro)
  • R6 ......................... Resistor de 22K ohms (vermelho, vermelho, laranja, ouro)
  • R7, R8, R9, R10.... Resistor de 100 ohms (marrom, preto, marrom, ouro)
  • R11, R12 ............... Resistor de 470 ohms (amarelo, violeta, marrom, ouro)
  • R13, R14 ............... Resistor de 10 ohms (marrom, preto, preto, ouro)  
  • P1 .......................... Potenciômetro 10K
  • P2 .......................... Trimpot de 1K

  • L1 .......................... Indutor 5uH *Ver texto

  • B1, B3 ................... Terminal Kre Block Borne 2 Pinos
  • B2 .......................... Terminal Kre Block Borne 3 pinos

Placa de Circuito Impresso

Estamos disponibilizando a Placa de Circuito Impresso para baixar, como ilustrada na Figura 1, é um link direto, e nele estamos disponibilizamos os arquivos GERBER, PDF, LAYOUT, PNG, para download no link abaixo.

Arquivos para download

Link direto para o MEGA:


Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Qualquer dúvida, digita nos comentários que logos estaremos respondendo.
Se inscreva no nosso Blog! Clique aqui - FVM Learning!
Forte abraço.

Deus vos Abençoe
Shalom!

quinta-feira, 22 de abril de 2021

Amplificador de Potência 300W RMS com Transistores Complementares 2SC3858 e 2SA1494 + PCI

Fig 1 - PCI Amplificador de potência 300W RMS


Olá a Todos!!!

No post de hoje, iremos montar um um amplificador de alta potência 300W RMS, usando quatro transistores de potência complementares, 2SC3858 e 2SA1494, esse circuito foi enviado para nós pelo nosso parceiro elcircuits.com, por isso o circuito e a placa de circuito impresso tem o slogan da ELC "Electronic Circuits". 

Este amplificador possui uma excelente qualidade de áudio, e utiliza quatro transistores de potência de saída, atinge uma potência sonora de 300 W RMS sob carga de 4 ohms, alimentado por uma fonte de alimentação simétrica. 
Este amplificador não é um circuito tão simples de montar, será necessário ter pelo menos conhecimento e um pouco de experiência em eletrônica, sua complexidade é moderado, e se você não tem conhecimentos em circuitos eletrônicos, aconselhamos que não o faça, porém, se realmente quiser fazer, chame alguém com experiência, para ajudá-lo. 

Você pode verificar o diagrama esquemático do circuito amplificador de potência na Figura 2 abaixo.

Fig. 2 -  Diagrama esquemático Amplificador de potência 300 W RMS

Fonte de Alimentação

A fonte de alimentação consiste em um transformador simétrico de +45Vac 0V - 45Vac, com uma corrente de 6 Amperes, logo depois de passar pela retificação, teremos aproximadamente +63Vcc 0V -63Vcc,  na saída da fonte de alimentação simétrica.

Lista de componentes

  • Q1, Q2, Q3, Q5 ......... Transistor NPN C1815
  • Q4 .............................. Transistor PNP A1015
  • Q7 .............................. Transistor PNP TIP 42C  
  • Q8, Q9 ....................... Transistor de potência NPN 2SC3858
  • Q10, Q11 ................... Transistor de potência PNP 2SA1494 
  • Q6 .............................. Transistor NPN TIP41C 
  • D1 à D7 ..................... Diodo 1N4148, ou equivalente, como 1N4001
  • C1, C4 ....................... Capacitor eletrolítico de 2.2uF / 25V
  • C2 .............................. Capacitor Cerâmico / Poliéster 220pF  
  • C8 .............................. Capacitor de cerâmica / Poliéster 100nF 
  • R2, R10 ...................... Resistor de 47k ohms (amarelo, violeta, laranja, ouro)
  • R3, R5 ........................ Resistor de 2,2 k ohms (vermelho, vermelho, vermelho, ouro)
  • R4 ............................... Resistor de 270 ohms (vermelho, violeta, preto, ouro)
  • R6, R7 ........................ Resistor de 51K ohms - 1 / 2W (verde, marrom, laranja, ouro)
  • R8, R9, ....................... Resistor de 100 ohms (marrom, marrom, preto, ouro)
  • R11 ............................. Resistor de 470 ohms (amarelo, violeta, marrom, ouro)
  • R12 ............................. Resistor de 390 ohms (laranja, branco, marrom, ouro)
  • R13, R14 .................... Resistor de 100 ohms - 2W (marrom, marrom, preto, ouro)
  • R17, R18 .................... Resistor de  6R8 ohms - 1W (azul, cinza, ouro, ouro)
  • R15, R16, R19, R20 ... Resistor de  100 ohms - 1W (marrom, marrom, preto, ouro)
  • R21, R22, R23, R24 ... Resistor  0,33 ohms - 5W (laranja, laranja, ouro, ouro)
  • R25 ............................. Resistor de 22 ohms (vermelho, vermelho, preto, ouro)
  • R26 ............................. Resistor de 10 ohms -1W - (marrom, preto, preto. ouro)
  • P1, P2 ..........................Blocos de terminais 2 Pinos - PCB - EK500V-XXP 20A - ou equivalente
  • P3 ................................Blocos de terminais 3 Pinos - PCB - EK500V-XXP 20A - ou equivalente
  • Outros ........................ Alto-falante, fios, soldas e etc.

Arquivos para baixar

Para quem deseja fazer o download dos materiais como, o diagrama esquemático em PDF, PCB Layout, GERBER e JPG, estamos disponibilizando um link direto para realizar o download de todo o material.

Link direto para download

Clique no link ao lado para baixar os arquivos: Layout PCB, PDF, GERBER, JPG

E por hoje é só, espero que tenham gostado!!!

Quaisquer dúvidas, sugestões, correções, por favor, deixe nos comentários abaixo, que em breve estaremos respondendo.

Se inscreva no nosso Blog!!! Click Aqui FVM Learning!!!

Forte abraço.

Deus vos Abençoe!

Shalom!

domingo, 4 de abril de 2021

Classes de Amplificadores - As Principais Características dos Amplificadores de Áudio!

Fig. 1 - Principais Características dos Amplificadores de Áudio!

Olá a Todos!!!

Em eletrônica, o amplificador é o dispositivo de circuito mais comumente usado com grandes possibilidades de aplicação. E quem não gosta de um bom amplificador com audio de qualidade e que não nos custe o olho da cara.... 

Para os pré-amplificadores e amplificadores de potência eletrônicos relacionados a áudio, estão dois tipos diferentes de sistemas amplificadores que são usados ​​para propósitos relacionados à amplificação sonora. 

Mas, além desta finalidade específica da aplicação, existem enormes diferenças em vários tipos de amplificadores, principalmente em amplificadores de potência. 

Então, aqui vamos explorar no mínimo o básico sobre as diferentes classes de amplificadores e desenvolver um pouco mais nossas habilidades no conhecimento.

Classes de amplificadores de potência

Por muito tempo, as únicas classes de amplificadores relevantes para áudio de alta qualidade eram Classe-A e Classe-AB

Isso ocorria porque as válvulas eram os únicos dispositivos ativos, e os amplificadores de válvula Classe-B geravam tanta distorção que mal eram aceitáveis, mesmo para fins de endereçamento público. Todos os amplificadores com pretensões de alta fidelidade operavam em push-pull Classe-A.

Amplificadores Classe-A

Em um amplificador Classe A, a corrente flui continuamente em todos os dispositivos de saída, o que torna a sua eficiência muito baixa, mas quase nenhuma distorção de crossover. 

O amplificador final Classe A é a configuração mais simples e também uma das melhores configurações para reprodução de áudio de alta qualidade e pode ser implementado usando um seguidor de emissor padrão. 

A corrente quiescente através do transistor é igual ao pico da corrente de saída AC, o que significa que o transistor é polarizado no meio de sua faixa de trabalho e simplesmente conduz mais ou menos corrente quando acionado por uma voltagem alternada.

A eficiência de um amplificador classe A é muito baixa: 25% na amplitude máxima de saída e ainda menos em níveis de sinal baixos. 

A eficiência pode ser melhorada usando um projeto simétrico com 2 transistores, mas mesmo assim a maior eficiência. é 50%, o circuito básico ilustrativo, pode ser visualizado na Figura 2 abaixo.
Fig. 2 - Amplificador Classe-A

Amplificadores Classe-B

A operação de um amplificador de áudio Classe-B usa um par de transistores polarizados de forma que o transistor ativo, conduza em uma das metades da forma de onda, ou seja, meio ciclo da onda, e a outro na outra metade.

Isso é, em outro ciclo de onda, que significa que eles conduzem cada um em seu momento um ângulo de 180° que é a metade do ciclo total. 

Estágios de áudio Classe-B podem ter números de eficiência de até 75%, embora às custas de uma distorção um tanto maior do que com um estágio Classe-A usando o mesmo layout. O circuito básico ilustrativo, pode ser visualizado na Figura 3 abaixo.

Fig 3 - Amplificador Classe-B

Maior eficiência permite que uma maior potência de saída seja obtida com dissipadores de calor menores, e o uso de feedback negativo pode, com um projeto cuidadoso, reduzir a distorção a níveis desprezíveis. 

O Classe-B (ou Classe A – B, que usa corrente sem sinal mais alta) é o método de operação preferido para amplificadores com CI em níveis de potência de até cerca de 15 W de saída.

Amplificadores Classe-AB

Os amplificadores Classe-AB, não foram um desenvolvimento de classe, e sim uma combinação de duas classes já existentes, o Classe-A e o Classe-B, que já pudemos estudar acima.
Eles são atualmente os tipos mais comumente usados ​​na grande maioria dos fabricantes de amplificadores de áudio de potência. 

O amplificador Classe-AB é uma variação de um amplificador de Classe-B conforme descrito acima, exceto que ambos os dispositivos podem conduzir ao mesmo tempo em torno do ponto de crossover das formas de onda, eliminando os problemas de distorção de crossover do amplificador de Classe-B anterior.

A Classe-AB é menos linear do que A ou B, os dois transistores têm uma tensão de polarização muito pequena, normalmente de 5 a 10% da corrente quiescente para polarizar os transistores logo acima de seu ponto de corte. 

Então, o dispositivo de condução, seja bipolar ou FET, ficará “LIGADO” por mais de meio ciclo, mas muito menos de um ciclo completo do sinal de entrada. 

Portanto, em um projeto de amplificador de classe-AB, cada um dos transistores em configuração push-pull está conduzindo por um pouco mais do que meio ciclo de condução na classe-B, mas muito menos do que o ciclo completo de condução da classe-A. O circuito básico ilustrativo, pode ser visualizado na Figura 4 abaixo.
Fig 4 - Amplificador Classe-AB

Amplificadores Classe-C

As estruturas dos amplificadores Classe-C teem maior eficiência, no entanto, a linearidade são as menores das classes de amplificadores mencionados aqui. As classes anteriores, A, B e AB são consideradas amplificadores lineares, pois a amplitude e fase dos sinais de saída estão linearmente relacionadas à amplitude e fase dos sinais de entrada.

No entanto, o amplificador de classe-C é fortemente polarizado de modo que a corrente de saída seja zero por mais da metade de um ciclo de sinal senoidal de entrada com o transistor ocioso em seu ponto de corte. 

Em outras palavras, o ângulo de condução do transistor é significativamente menor do que 180 graus e geralmente está em torno da área de 90 grausO circuito básico ilustrativo, pode ser visualizado na Figura 5 abaixo.
Fig 5 - Amplificador Classe-C

Embora essa forma de polarização do transistor dê uma eficiência muito melhorada de cerca de 80% ao amplificador, ela introduz uma distorção muito forte do sinal de saída. Portanto, os amplificadores de classe-C não são adequados para uso como amplificadores de áudio.

Devido à sua forte distorção de áudio, os amplificadores classe-C são comumente usados ​​em osciladores de onda senoidal de alta frequência e certos tipos de amplificadores de frequência de rádio, onde os pulsos de corrente produzidos na saída do amplificador podem ser convertidos em ondas senoidais completas de uma determinada frequência pelo uso de circuitos ressonantes LC em seu circuito coletor.

Amplificadores Classe-D

Esses amplificadores alternam continuamente a saída de um ciclo para o outro em uma frequência supersônica, controlando a relação marca/espaço para fornecer uma média que representa o nível instantâneo do sinal de áudio; isso é alternativamente chamado de modulação por largura de pulso (PWM). O circuito básico ilustrativo, pode ser visualizado na Figura 6 abaixo.

Fig 6 - Amplificador Classe-D

Grande esforço e engenhosidade foram devotados a essa abordagem, pois a eficiência é em teoria muito alta, mas as dificuldades práticas são graves, especialmente em um mundo de legislação EMC cada vez mais rígida, onde não está claro que uma onda quadrada em 200kHz com alta potencia é um bom lugar para começar. 

A distorção não é inerentemente baixa, e a quantidade de feedback negativo global que pode ser aplicada é severamente limitada pelo pólo devido à frequência efetiva de amostragem direto de feedback

É necessário um filtro passa-baixa de corte nítido entre o amplificador e o alto-falante, para remover a maior parte do RF; isso exigirá pelo menos quatro indutores (para estéreo) e custará dinheiro, mas seu pior recurso é que ele só dará uma resposta de frequência plana em uma impedância de carga específica.

Amplificadores Classe-F

Os amplificadores Classe-F aumentam a eficiência e a saída usando ressonadores harmônicos na rede de saída para moldar a forma de onda de saída em uma onda quadrada. 

Os amplificadores Classe-F são capazes de altas eficiências de mais de 90% se a sintonia harmônica infinita for usada. O circuito básico ilustrativo, pode ser visualizado na Figura 7 abaixo.
Fig. 7 - Amplificador Classe-F

Amplificadores Classe-G

Este conceito foi introduzido pela Hitachi em 1976 com o objetivo de reduzir a dissipação de potência do amplificador. 

Os sinais musicais têm uma relação de pico/média, passando a maior parte do tempo em níveis baixos, então a dissipação interna é muito reduzida ao correr pelas grade de baixa tensão para saídas pequenas, mudando para grade de correntes mais altas para excursões de maiores potências.

A série básica Classe-G trabalha com duas tensões de alimentação (ou seja, quatro grades de alimentação, como ambas as tensões são simétricas ±), a corrente é retirada da grade de alimentação V1 inferiores sempre que possível.

Se o sinal exceder V1, TR6 conduz e D3 desliga, de forma que a corrente de saída agora é inteiramente retirada da grade de alimentação V2, com dissipação de energia compartilhada entre TR6 e TR8

O estágio interno TR3, TR4 é normalmente operado na Classe-B, embora AB ou A sejam igualmente viáveis ​​se a polarização do estágio de saída for adequadamente aumentada. 

Os dispositivos externos estão efetivamente na Classe-C, pois conduzem por menos de 50% do tempo. O circuito básico ilustrativo, pode ser visualizado na Figura 8 abaixo.
Fig 8 - Amplificador Classe-G

Em princípio, os movimentos da tensão do coletor nos coletores do dispositivo interno não devem afetar significativamente a tensão de saída, mas na prática o Classe-G é frequentemente considerada como tendo uma linearidade mais pobre do que a Classe-B devido a falhas devido ao armazenamento de carga nos diodos de comutação D3, D4.

Amplificadores Classe-H

O amplificador Classe-H é mais uma vez basicamente Classe-G, mas com um método de aumentar dinamicamente a tensão de alimentação (ao invés de mudar para outro bloco de alimentação) a fim de aumentar a eficiência. O mecanismo usual é uma forma de bootstrapping

Classe-H é ocasionalmente usada para descrever tecnicamente um nível acima do Classe-G; podemos prescindir melhor o nosso entendimento abordando o assunto dessa maneira.

Amplificadores Classe-I

Os amplificadores Classe-I  teem dois conjuntos de dispositivos de comutação de saída complementares dispostos em uma configuração push-pull paralela com ambos os conjuntos de dispositivos de comutação amostrando a mesma forma de onda de entrada. 

Um dispositivo alterna a metade positiva da forma de onda, enquanto o outro alterna a metade negativa semelhante a um amplificador classe-B

Sem nenhum sinal de entrada for aplicado, ou quando um sinal atinge o ponto de cruzamento zero, os dispositivos de chaveamento são LIGADOS e DESLIGADOS simultaneamente com um ciclo de trabalho PWM de 50% cancelando quaisquer sinais de alta frequência.

Para produzir a metade positiva do sinal de saída, a saída do dispositivo de comutação positiva é aumentada no ciclo de trabalho, enquanto o dispositivo de comutação negativo é diminuído da mesma forma e vice-versa. 

As duas correntes de sinal de comutação são intercaladas na saída, dando ao amplificador classe-I o nome de: “amplificador PWM intercalado” operando em frequências de comutação superiores a 250 kHz.

Amplificadores Classe-S

Amplificador de Classe-S é um amplificador que trabalha em modo de comutação não linear, ele é bastante semelhante ao tipo de operação dos amplificadores classe-D

A Sony desenvolveu sua tecnologia S-Master, em sua tecnologia, a Sony combinou várias técnicas para tornar a configuração de Classe-D adequada para aplicações domésticas de alta fidelidade. 

Aqui, o processo de conversão do sinal de entrada em um sinal de largura de pulso correspondente é chamado de modulação de comprimento de pulso complementar.

O amplificador classe-S converte sinais de entrada analógicos em pulsos de onda quadrada digital por um modulador delta-sigma e os amplifica para aumentar a potência de saída antes de finalmente ser Demodulado por um filtro passa-banda. O circuito básico ilustrativo, pode ser visualizado na Figura 9 abaixo.
Fig 9 - Amplificador Classe-S

Como o sinal digital deste amplificador de comutação está sempre totalmente “LIGADO” ou “DESLIGADO(na teoria, dissipação de energia zero), tecnicamente a eficiências desse amplificador chegaria a 100% de eficiência.

Amplificadores Classe-T

Os amplificadores Classe-T são outro tipo de formato de amplificadores de comutação digital. Amplificadores Classe-T estão começando a se tornar mais populares atualmente como um projeto de amplificador de áudio.

Devido à existência de chips de processamento de sinal digital (DSP) e amplificadores de som surround multicanal, pois converte sinais analógicos em sinais modulados por largura de pulso digital (PWM) para amplificação aumentando a eficiência dos amplificadores. 

A empresa Tripath desenvolveu uma técnica que combina a qualidade do sinal de amplificadores classe A e AB com alta eficiência (cerca de 80-90%). 

Isso é feito usando uma combinação de circuitos analógicos e digitais, juntamente com algoritmos digitais que modulam o sinal de entrada usando uma forma de onda de comutação de alta frequência. 

O circuito ilustrativo, pode ser visualizado na Figura 10 abaixo, esse foi obtido pelo datasheet do mesmo.
Fig. 10 - Amplificador Classe-T

Os projetos de amplificadores de classe-T combinam os níveis de sinal de baixa distorção do amplificador de classe-A e classe-AB e a eficiência de energia de um amplificador de classe-D.


Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Qualquer dúvida, digita nos comentários que logos estaremos respondendo.
Se inscreva no nosso Blog! Clique aqui - FVM Learning!
Forte abraço.

Deus vos Abençoe
Shalom!