FVM Learning

Nosso maior compromisso é compartilhar conhecimentos, somos simples, mas não simplórios, astuto, mas não pacóvio, nos posicionamos empenhados em mostrar o caminho para desmistificação do opróbrio em legítima defesa do conhecimento compartilhado. Eng. Jemerson Marques!

terça-feira, 26 de abril de 2022

Conversor Booster Variável, entrada 12V saída 5 à 48V com CI UC3843 + PCI

Fig. 1 - Conversor Booster Variável, entrada 12V saída 5 à 48V com CI UC3843 + PCI

Olá a Todos!

No post de hoje, montaremos um simples conversor Booster CC/CC baseado no Circuito Integrado UC3843, a faixa de frequência de trabalho é cerca de 90 95KHz.

Ele consegue converter uma tensão de entrada entre 9 à 18Vcc para uma tensão de saída ajustável conforme a sua necessidade em uma faixa entre 4 à 50Vcc.

Aplicações

Essa categoria de conversor, pode ser utilizado em uma ampla gama de equipamentos que precisam de alimentação maior ou menor que a tensão de entrada, já que essa categoria de conversor funciona como um elevador ou diminuidor de tensão, e podemos utilizar em:

  • Notebook
  • Amplificadores
  • Rádios portáteis
  • Carregador USB
  • Televisores
  • Filmadoras
  • Entre muitos outros

Como o Circuito Funciona? 

Esse circuito conversor Booster, converte uma tensão de entrada de Corrente Contínua CC, em outra tensão de CC.

A tensão de entrada é cerca de 9 a 18Vcc, e a tensão de saída pode ser selecionada conforme sua necessidade, cerca de 3 a 50Vcc

A tensão de saída pode ser menor ou maior que a de entrada. O Circuito é baseado na topologia de conversores do tipo Ćuk magnético, com controle de frequência PWM, conduzido pelo circuito integrado UC3843, bastante conhecido no mercado, e bem em conta.

Os capacitores C1 e C2, são capacitores que ajudam a eliminar os Ripples e filtrar transientes advinda da fonte. 

O que é Conversor Ćuk

O conversor Ćuk ou regulador Ćuk é um conversor CC/CC que fornece uma tensão de saída que é menor ou maior que a tensão de entrada, mas a polaridade da tensão de saída é oposta à da tensão de entrada. 

Os reguladores Ćuk baseiam-se na transferência de energia do capacitor. Como resultante, a corrente de entrada é contínua. O circuito tem baixas perdas de chaveamento e eficiência elevada, e uma corrente “Ripple” de ondulação quase zero. 

Características do Circuito Integrado

O Circuito Integrado UC3843 fornece os recursos necessários para implementar esquemas de controle de modo de corrente de frequência fixa OFF-LINE ou CC para CC, com um número mínimo de componentes externos. 

Os circuitos implementados internamente incluem um bloqueio de subtensão (UVLO), apresentando uma corrente de inicialização inferior a 1 mA e uma referência de precisão ajustada para precisão na entrada do amplificador de erro. 

Outros circuitos internos incluem lógica para garantir a operação travada, um comparador de modulação por largura de pulso (PWM) que também fornece controle de limite de corrente e um estágio de saída totem-pole projetado para fornecer ou absorver corrente de pico alto. 

O estágio de saída, adequado para acionar MOSFETs de canal N, é baixo quando está no estado desligado.

O Indutor!

O conversor usa um indutor duplo, com relação 1:1. Podemos montar o nosso indutor, enrolando dois fios iguais, simultaneamente em um núcleo toroidal (Tipo Anel) de pó de ferro, como mostrado na Figura 2, abaixo.

Fig. 2 - Indutor toroidal 60uH - 24 voltas de Fio 1mm

Recomendamos utilizar o núcleo toroidal desses encontrados em fontes ATX, de cor amarelo-branco (material 26) ou com núcleo verde-azul (material 52). Ambos os materiais têm a mesma permeabilidade de 75.

Baseado na tensão escolhida em nosso projeto, o indutor foi enrolado em um núcleo toroidal com 2 fios de 1mm, com 24 voltas, enrolados juntos na mesma direção. A indutância de cada enrolamento fica em torno de 60uH

Regulagem da tensão de Saída!

A tensão de saída é determinada através do trimpot RP1, podendo ser calculada seguindo a fórmula descrita abaixo:

  • R1 = (Vout - 2,5) * 1880
Vout = Tensão em Volts e, R = Resistência em Ohms

Em nosso caso, o resistor que calcularemos será para 19V, para alimentar um notebook  em nosso carro:
  • RP1 = (19 - 2,5) * 1880
  • RP1 = 16,5 *1880
  • RP1 = 31,020 ou 31,02KΩ
Lembrando que o Trimpot está em série com o resistor R2, sendo assim, devemos subtrair o valor do resistor R2 que é de 2.200Ω, com o valor calculado, exemplo:
  • RP1 = 31,020Ω
  • R2 = 2,200Ω
Então:
  • 31,0202 - 2,200 =   28,820, ou 28,8KΩ
Esse é o valor que deve está regulado o Trimpot, RP1.
Mas, você pode está colocando um multímetro na saída e regular o mesmo para a tensão desejada.

Digrama Esquemático do Circuito

Na Figura 3 abaixo, temos o diagrama esquemático do circuito Conversor Booster, e a disposição dos componentes, é um circuito simples de se montar, mas é necessário dar atenção a montagem, por isso o conhecimento técnico necessário para montar esse circuito está entre o nível Intermediário ao avançado.
Fig. 3 - Conversor Booster Variável, entrada 12V saída 5 à 48V com CI UC3843

Lista de Componentes

  • Semicondutores
    • U1 ........ Circuito Integrado UC3842
    • Q1 ........ Transistor Mosfet NPN IRF3710
    • D1 ........ Diodo Schottky MBR10150

  • Resistores
    • R1 ........ Resistor 8.2KΩ (cinza, vermelho, vermelho, dourado
    • R2 ........ Resistor 2.2KΩ (vermelho, vermelho, vermelho, dourado
    • R3 ........ Resistor 4.7KΩ (amarelo, violeta, vermelho, dourado
    • R4 ........ Resistor 150KΩ (marrom, verde, amarelo, dourado
    • R5 ........ Resistor 10Ω (marrom, preto, marrom, dourado
    • R6 ........ Resistor 1KΩ (marrom, preto, vermelho, dourado
    • R7 ........ Resistor 10KΩ (marrom, preto, laranja, dourado
    • R8 ........ Resistor 0.08Ω (preto, cinza, prata, dourado
    • RP1 ..... Trimpot de 100KΩ

  • Capacitores
    • C1, C2, C8 ..... Capacitor Eletrolítico 3.300μF / 65V
    • C2, C3, C9 ..... Capacitor Poliéster/Cerâmico 100nF
    • C4 .................. Capacitor Poliéster/Cerâmico 2.2nF
    • C5 .................. Capacitor Poliéster/Cerâmico 150pF
    • C6 .................. Capacitor Poliéster/Cerâmico 330pF

  • Indutor
    • L1 .................. Indutor duplo 60uH *ver texto

  • Diversos
    • P1, P2......... Conector WJ2EDGVC-5.08-2P
    • F1 .............. Fusível de 10A soldável.
    • Outros ....... Placa Circuito Impresso, estanho, fios, etc.

A Placa de Circuito Impresso

Estamos disponibilizando os arquivos contendo a PCI, como ilustrado na Figura 4 abaixo, o Diagrama Esquemático, o PDFGERBER JPG, PNG, e disponibilizando um link direto para baixar gratuito e em um link direto, "MEGA".
Fig. 4 - PCI - Conversor Booster Variável, entrada 12V saída 5 à 48V com CI UC3843

Link direto para baixar

Clique no link ao lado para baixar os arquivos: Layout PCB, PDF, GERBER, JPG

Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Quaisquer dúvidas, sugestões, correções, por favor, deixe nos comentários abaixo, que em breve estaremos respondendo.

Se inscreva no nosso BlogClique Aqui FVM Learning!

Forte abraço.

Deus vos Abençoe
Shalom!

Nenhum comentário:

Postar um comentário