FVM Learning

Nosso maior compromisso é compartilhar conhecimentos, somos simples, mas não simplórios, astuto, mas não pacóvio, nos posicionamos empenhados em mostrar o caminho para desmistificação do opróbrio em legítima defesa do conhecimento compartilhado. Eng. Jemerson Marques!
Mostrando postagens com marcador Carregador de Bateria. Mostrar todas as postagens
Mostrando postagens com marcador Carregador de Bateria. Mostrar todas as postagens

sábado, 25 de junho de 2022

Carregador de Bateria Chumbo-Ácido com Indicador de Carga usando LM317 com PCI

Fig. 1 - Carregador de Bateria Chumbo-Ácido com Indicador de Carga usando LM317 com PCI

Olá a Todos!

No post de hoje, montaremos um circuito bastante interessante e muito simples de se montar, no entanto, bastante eficaz e necessário para uso no dia a dia.

Um simples carregador de bateria de Chumbo-Ácido ou baterias de Célula de Gel, de 12V, tendo como base o velho e conhecido Circuito Integrado LM317, e alguns outros componentes discretos com baixo custo, e de fácil aquisição. 

O CI LM317 fornece uma tensão pré-configurada para o carregamento correto da bateria. Uma fórmula básica para aplicar em carregamento de baterias de Chumbo-Ácido ou Célula de Gel, é feita utilizando uma corrente de carregamento de aproximadamente 10% da corrente da bateria

Este circuito carregador foi desenvolvido baseado nessa proporção, podendo ser ajustada conforme o corrente da bateria que você irá utilizar. 

Como Funciona o Circuito?

A componente principal deste circuito é o regulador de tensão ajustável LM317, ele está configurado como circuito de corrente de carga ajustável. 

Ele irá controlar a corrente entregue a bateria, através do transistor 2N3904 que controla a corrente constante na saída. Ele altera sua condução conforme a corrente de consumo do carregador se eleva.

Isso ocorre porque o transistor está configurado de forma que a corrente que trafega através do resistor R2, que funciona como um resistor Shunt polarize o transistor.

Quando a corrente se eleva, uma tensão nos terminais do resistor se forma, se essa tensão atingir o valore de polarização do transistor, que está entre 0,6V à 0,7V, o transistor conduzirá, e controlara o regulador de tensão, e o LED indicador de carregamento se mantém aceso.

O LED1 vermelho mostrará o estado de carga da bateria. Quando a tensão da bateria atingir a tensão regulada, a corrente cairá para alguns miliamperes. 

Isso diminuirá a tensão no transistor Q1 e no LED1 mais baixa, se a corrente diminuir a ponto de chegar cerca de 5%, o transistor não conduzirá e o LED1 desligar. 

Em testes em bancada, ao colocarmos a bateria no circuito, a tensão caiu, e a corrente inicialmente foi  cerca de 700mA, e quando a bateria estava se carregando, e a tensão começou a subir próximo da tensão de 12V pré-regulada, a corrente diminuirá próximo a zero.

Você pode estar setando a tensão para 13.8V, isso aumentará a corrente de carga um pouco, dependendo da bateria. Será necessário utilizar um dissipador de calor no Regulador de Tensão LM317!

Tempo de Carregamento da Bateria

Para determinar  o tempo aproximado que levará para carregar a nossa bateria, é necessário identificar duas características básicas: 
  • A capacidade da bateria em Amperes/hora “Ah”. 
  • A corrente de fornecimento do carregador em Amperes “A”.
O tempo de carregamento, dependerá da corrente da bateria, mas, utilizando uma fórmula simples, podemos calcular o tempo de carregamento da nossa bateria.

Fórmula geral:

TCh = BAh / CA

  • TCh = Tempo de Carregamento
  • BAh = Corrente da Bateria em Ampere por hora Ah
  • CA = Capacidade de fornecimento do carregador em Ampere A 
No entanto, para um carregador com fornecimento de 700mAh, e uma bateria de 7Ah:
  • TCh = BAh / CA

  • TCh = 7 / 0,700
  • TCh  = 10h
Portanto, o tempo de carregamento para a bateria que utilizamos para nosso experimento, que estava bem descarregada, levou  aproximadamente 8 horas para carga completa.

O tempo calculado, é considerando que a bateria estivesse “totalmente” vazia, que não seria o normal uma bateria vazia por completo. Em outros testes que efetuamos com baterias que estavam pouco descarregadas, o tempo de carregamento ficou cerca entre 4:35h à 6:42h até o carregamento completo.

Digrama Esquemático do Circuito

Na Figura 2 abaixo, temos o diagrama esquemático do circuito Carregador de Bateria Chumbo-Ácido usando LM350, e a disposição dos componentes, é um circuito simples de se montar, mas é necessário conhecimento técnico básico a intermediário para montar esse circuito.
Fig. 2 - Circuito Carregador de Bateria Chumbo-Ácido com Indicador de Carga usando LM317

Lista de Componentes

  • Semicondutores
    • U1 ....... Circuito Integrado LM317
    • Q1 ....... Transistor Mosfet NPN 2N3904 (ou equivalente)
    • LED1 ... Led de uso geral 3mm vermelho
    • LED1 ... Led de uso geral 3mm verde

  • Resistores
    • R1 ..... Resistor 1.8Ω (marrom, cinza, vermelho, dourado
    • R2 ..... Resistor  / 2W (marrom, preto, preto, dourado
    • R3 ..... Resistor 330Ω (laranja, laranja, marrom, dourado
    • R4 ..... Resistor 2.2KΩ (vermelho, vermelho, vermelho, dourado

    • RP1 ... Trimpot de 10KΩ

  • Capacitores
    • C1, C2 ... Capacitor Poliéster/Cerâmico 470nF ou 0.47uF

  • Diversos
    • P1, P2..... Conector WJ2EDGVC-5.08-2P
    • Outros .... PCI, estanho, dissipador e calor, fios, etc.

A Placa de Circuito Impresso

Estamos disponibilizando os arquivos contendo a PCI, como ilustrado na Figura 4 abaixo, o Diagrama Esquemático, o PDFGERBER JPG, PNG, e disponibilizando um link direto para baixar gratuito e em um link direto, “MEGA”.
Fig. 3 - PCI - Carregador de Bateria Chumbo-Ácido com Indicador de Carga usando LM317

Link direto para baixar

Clique no link ao lado para baixar os arquivos: Layout PCB, PDF, GERBER, JPG

Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Quaisquer dúvidas, sugestões, correções, por favor, deixe nos comentários abaixo, que em breve estaremos respondendo.

Se inscreva no nosso BlogClique Aqui FVM Learning!

Forte abraço.

Deus vos Abençoe
Shalom!

terça-feira, 7 de junho de 2022

Mini Fonte de Alimentação Chaveada 5V - 25V, 3A com TNY268 com PCI

Fig. 1 - Mini Fonte de Alimentação Chaveada 5V - 25V, 3A com TNY268 com PCI

Olá a Todos!

No Post de hoje, montaremos uma fonte de alimentação Chaveada bastante simples, ela é automática, com tensão de entrada de 80Vac à 260Vac, e fornece uma tensão de saída que pode ser regulada entre 5V à 25, com corrente de até 3A, dependendo da configuração que escolheremos.

Essa é uma fonte baseada no Circuito Integrado TNY268, que faz parte de uma série de circuitos TinySwitch-II: TNY263, TNY264, TNY265, TNY266, TNY267 a TNY268

Para uma fonte chaveada do tipo Flyback como a proposta, esse CI é ideal, ele integra em seu encapsulamento, os componentes necessários para funcionamento: 
  • Controle PWM, Mosfets de Potência 
  • Proteção Sobre-Corrente
  • Proteção Sobre-Temperatura
  • Sistema de Auto-Alimentação

Ele não necessita de enrolamento auxiliares, o que torna um CI completo, com encapsulamento DIP8, com frequência de trabalho PWM de 132kHz e tensão de até 700V.

ATENÇÃO!

Esse circuito trabalha conectado diretamente à rede elétrica, isso é extremamente perigoso, qualquer descuido, ou ligações erradas, erro no projeto, ou qualquer outra ocasião, pode levar a danos irreversíveis. 

Nós não nos responsabilizamos por qualquer tipo de ocorrência. Se você não tem experiência suficiente, não monte esse circuito, e se montar, ao testar, esteja com as devidas proteções e acompanhado por outrem. 

Você pode se interessar também!

O Circuito Integrado TinySwitch-II TNY268

O TinySwitch-II integra um MOSFET de potência de 700 V, oscilador, fonte de corrente comutada de alta tensão, limite de corrente e circuitos de desligamento térmico em um dispositivo monolítico. 

A potência de partida e operação são derivadas diretamente da tensão no pino DRAIN, eliminando a necessidade de um enrolamento de polarização e circuitos associados. 

Além disso, os dispositivos TinySwitch-II incorporam reinicialização automática, detecção de subtensão de linha e jitter de frequência. 

O circuito de reinicialização automático totalmente integrado limita com segurança a potência de saída durante condições de falha, como curto-circuito de saída ou malha aberta, reduzindo a contagem de componentes e o custo do circuito de realimentação secundário. 

A frequência de operação de 132 kHz é alterada para reduzir significativamente tanto o quase pico quanto a EMI média, minimizando o custo de filtragem.

Características

  • Os recursos do TinySwitch-II reduzem o custo do sistema
  • Reinício automático totalmente integrado para proteção contra curto-circuito e falha de circuito aberto – economiza custos de componentes externos
  • O circuito integrado praticamente elimina o ruído audível com o transformador comum envernizado por imersão
  • O recurso de detecção de subtensão de linha programável evita falhas de ligar/desligar – economiza componentes externos
  • O Jitter de frequência reduz drasticamente a EMI (~10 dB) – minimiza os custos dos componentes do filtro EMI
  • A operação de 132 kHz reduz o tamanho do transformador – permite o uso de núcleos EF12.6 ou EE13 para baixo custo e tamanho pequeno
  • Solução de Switcher de contagem de componentes mais baixa
  • Família de dispositivos escaláveis expandida para baixo custo do sistema

TNY268 - Pinagem e Descrição

O TNY268 vem encapsulado em estrutura DIP-8B para pinagem perfurada e com encapsulamento de SMD-8B para SMD

O encapsulamento é semelhante ao conhecido CI LM555, com exceção do pino 6 ocultado no TNY268, como podemos visualizar na pinagem da Figura 2, abaixo.
Fig. 2 - Pinagem - Pinout TNY268

Deixamos abaixo a descrição de cada pino do Circuito Integrado TNY268 para facilitar a nossa compreensão.

  • DRENO (D): Conexão de dreno MOSFET de alimentação. Fornece corrente de operação interna para operação de partida e de estado estacionário.
  • BYPASS (BP): Ponto de conexão para um capacitor de bypass externo de 0,1 μF para a alimentação de 5,8 V gerada internamente.
  • ENABLE/UNDERVOLTAGE (EN/UV): Este pino tem duas funções: habilitar entrada e detecção de subtensão de linha. Durante a operação normal, a comutação do MOSFET de potência é controlada por este pino. A comutação MOSFET é terminada quando uma corrente maior que 240 μA é extraída deste pino.
    Este pino também detecta as condições de subtensão da linha através de um resistor externo conectado à tensão da linha CC. Se não houver resistor externo conectado a este pino, o TinySwitch-II detecta sua ausência e desabilita a função de subtensão da linha.
  • SOURCE (S): Circuito de controle comum, conectado internamente à fonte MOSFET de saída.
  • SOURCE (HV RTN): Saída de conexão da fonte MOSFET para retorno de alta tensão.

O Circuito Fonte Chaveada

O circuito Mini Fonte de Alimentação Chaveada 5V - 24V, 3A com TNY268, tem seu diagrama  esquemático disposto na Figura 3 abaixo, e como podemos verificar, é um circuito simples.

Fig. 3 - Circuito Mini Fonte de Alimentação Chaveada 5V - 25V, 3A com TNY268

No entanto, é necessário bastante cuidado, já que estamos trabalhando com energia elétrica, conhecimento no mínimo intermediário em eletrônica é necessário para montar esse circuito.

A tensão de Saída

A tensão de saída, é ajustada através de dois parâmetros no circuito:
  1. O diodo D4, que é um diodo Zener de 1W de Potência.
  2.  O enrolamento secundário do transformador.

O Diodo Zener

O diodo zener D4, é o diodo que ajustará a tensão de saída, devemos configurá-lo da seguinte maneira,
quando a tensão desejada for Xv, o diodo zener deverá ter uma tensão Xv - 1.
O diodo deverá deverá ser 1V menor que a tensão nominal da fonte, essa tensão menor, é devido ao foto-acoplador está ligado em série com o diodo zener, e ele sendo um diodo “LED”, temos a queda de tensão nele.

Por Exemplo:

Para se obter uma tensão de 5V na saída da fonte:
  • O diodo zener D44V. Usamos um diodo zener comercial de 4,3V - 1N4731.

Para se obter uma tensão de 9V na saída da fonte:
  • O diodo zener D4 = 8V. Usamos um diodo zener comercial de 8,2V 1N4738.

Para se obter uma tensão de 12V na saída da fonte:
  • O diodo zener D411V. Usamos um diodo zener comercial de 1N4741.

Para se obter uma tensão de 25V na saída da fonte:
  • O diodo zener D4 = 24V. Usamos um diodo zener comercial de 1N4749.

O Transformador

O transformador utilizado nesse circuito, foi um trafo de alta frequência, muito encontrado em fontes de PC, como ilustrado na Figura 4 abaixo, um transformador de Ferrite modelo EE-25
Fig. 4 - Transformador de Ferrite EE-25

Enrolamento da bobina Primária

O primário será enrolado para suporta uma tensão entre 85V à 265V, e isso será feito enrolando 140 voltas de fio esmaltado 33AWG, ou fio de 0,18 mm de diâmetro. 

Logo após enrolar o primário, coloque fita de isolamento apropriada, com isolamento elétrico, e térmico, para isolar o primário do secundário.

Enrolamento da bobina Secundária

O secundário será enrolado conforme a tensão desejada na saída, e isso será realizado de forma tal que, para cada 1V desejado, seja enrolada 1,4 voltas de fio esmaltado 17AWG ou fio de 1,15 mm.

O cálculo para uma tensão de saída de 5V, pode ser alcançado usando a fórmula abaixo:

  • Fórmula: N = V * F
  • N = Numero de Voltas
  • V = Tensão Desejada
  • C = Constante = 1.4

  • V = 5V
  • C = 1.4
  • N = ?

  • N = 5 * 1.4
  • N = 7 Voltas
Para 5V na saída, termos 7 Voltas para se enrolar no secundário.

O cálculo para uma tensão de saída de 9V:

  • V = 9V
  • F = 1.4
  • N = ?

  • N = 9 * 1.4
  • N = 12,6 = ~13 Voltas
Para 9V na saída, termos 13 Voltas para se enrolar no secundário.

O cálculo para uma tensão de saída de 12V:

  • V = 12V
  • F = 1.4
  • N = ?

  • N = 12 * 1.4
  • N = 16,8 = ~17 Voltas
Para 12V na saída, termos 17 Voltas para se enrolar no secundário.

O cálculo para uma tensão de saída de 24V:

  • V = 25V
  • F = 1.4
  • N = ?

  • N = 25 * 1.4
  • N = 35 Voltas
Para 24V na saída, termos 37 Voltas para se enrolar no secundário.
O bom é que com a fórmula, podemos calcular qualquer tensão que desejarmos obter na saída da nossa fonte chaveada. 

Lista de componentes

  • Semicondutor
    • U1 ......... Circuito Integrado TNY268P
    • OPT ....... Opto-Acoplador TLP181
    • D1, D2 ... Diodo 1N4007
    • D3 ......... Diodo Rápido FR307
    • D4 ......... Diodo Zener *Ver Texto

  • Resistor
    • R1 .... Resistor 10Ω / 1W (marrom, preto, preto, ouro)
    • R2 .... Resistor 200KΩ / 1/4W (vermelho, preto, amarelo, ouro)
    • R3 .... Resistor 470Ω / 1/4W (amarelo, violeta, marrom, ouro)

  • Capacitores
    • C1 ............ Capacitor Eletrolítico 47uF/400V
    • C2 ............ Capacitor Poliéster 2.2nF
    • C3 ............ Capacitor Poliéster 100nF
    • C4 ............ Capacitor Eletrolítico 470uF/35V

  • Diversos
    • T1 ......... Transformador de Ferrite EE-25
    • P1, P2 ... Conector WJ2EDGVC-5.08-2P
    • Outros ... PCI, Fios, Soldas, Etc.

Placa de Circuito Impresso - Download

Na Figura 3 logo abaixo, estamos disponibilizando a PCI em arquivos GERBER, PDF e JPEG, para você que deseja elaborar uma montagem mais otimizada, ou em casa, ou se preferir, em uma empresa que imprima a placa.

Você pode está baixando os arquivos gratuitamente em um link direto na opção de Download logo abaixo.
Fig. 5 - PCI Mini Fonte de Alimentação Chaveada 5V - 25V, 3A com TNY268

Arquivos Para Baixar, Link Direto MEGA:

Clique Aqui! Arquivos para Baixar!

Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Qualquer dúvida, digita nos comentários que logos estaremos respondendo.

Se inscreva no nosso BlogClique Aqui FVM Learning!

Forte abraço.

Deus vos Abençoe
Shalom!

terça-feira, 26 de abril de 2022

Conversor Booster Variável, entrada 12V saída 5 à 48V com CI UC3843 + PCI

Fig. 1 - Conversor Booster Variável, entrada 12V saída 5 à 48V com CI UC3843 + PCI

Olá a Todos!

No post de hoje, montaremos um simples conversor Booster CC/CC baseado no Circuito Integrado UC3843, a faixa de frequência de trabalho é cerca de 90 95KHz.

Ele consegue converter uma tensão de entrada entre 9 à 18Vcc para uma tensão de saída ajustável conforme a sua necessidade em uma faixa entre 4 à 50Vcc.

Aplicações

Essa categoria de conversor, pode ser utilizado em uma ampla gama de equipamentos que precisam de alimentação maior ou menor que a tensão de entrada, já que essa categoria de conversor funciona como um elevador ou diminuidor de tensão, e podemos utilizar em:

  • Notebook
  • Amplificadores
  • Rádios portáteis
  • Carregador USB
  • Televisores
  • Filmadoras
  • Entre muitos outros

Como o Circuito Funciona? 

Esse circuito conversor Booster, converte uma tensão de entrada de Corrente Contínua CC, em outra tensão de CC.

A tensão de entrada é cerca de 9 a 18Vcc, e a tensão de saída pode ser selecionada conforme sua necessidade, cerca de 3 a 50Vcc

A tensão de saída pode ser menor ou maior que a de entrada. O Circuito é baseado na topologia de conversores do tipo Ćuk magnético, com controle de frequência PWM, conduzido pelo circuito integrado UC3843, bastante conhecido no mercado, e bem em conta.

Os capacitores C1 e C2, são capacitores que ajudam a eliminar os Ripples e filtrar transientes advinda da fonte. 

O que é Conversor Ćuk

O conversor Ćuk ou regulador Ćuk é um conversor CC/CC que fornece uma tensão de saída que é menor ou maior que a tensão de entrada, mas a polaridade da tensão de saída é oposta à da tensão de entrada. 

Os reguladores Ćuk baseiam-se na transferência de energia do capacitor. Como resultante, a corrente de entrada é contínua. O circuito tem baixas perdas de chaveamento e eficiência elevada, e uma corrente “Ripple” de ondulação quase zero. 

Características do Circuito Integrado

O Circuito Integrado UC3843 fornece os recursos necessários para implementar esquemas de controle de modo de corrente de frequência fixa OFF-LINE ou CC para CC, com um número mínimo de componentes externos. 

Os circuitos implementados internamente incluem um bloqueio de subtensão (UVLO), apresentando uma corrente de inicialização inferior a 1 mA e uma referência de precisão ajustada para precisão na entrada do amplificador de erro. 

Outros circuitos internos incluem lógica para garantir a operação travada, um comparador de modulação por largura de pulso (PWM) que também fornece controle de limite de corrente e um estágio de saída totem-pole projetado para fornecer ou absorver corrente de pico alto. 

O estágio de saída, adequado para acionar MOSFETs de canal N, é baixo quando está no estado desligado.

O Indutor!

O conversor usa um indutor duplo, com relação 1:1. Podemos montar o nosso indutor, enrolando dois fios iguais, simultaneamente em um núcleo toroidal (Tipo Anel) de pó de ferro, como mostrado na Figura 2, abaixo.

Fig. 2 - Indutor toroidal 60uH - 24 voltas de Fio 1mm

Recomendamos utilizar o núcleo toroidal desses encontrados em fontes ATX, de cor amarelo-branco (material 26) ou com núcleo verde-azul (material 52). Ambos os materiais têm a mesma permeabilidade de 75.

Baseado na tensão escolhida em nosso projeto, o indutor foi enrolado em um núcleo toroidal com 2 fios de 1mm, com 24 voltas, enrolados juntos na mesma direção. A indutância de cada enrolamento fica em torno de 60uH

Regulagem da tensão de Saída!

A tensão de saída é determinada através do trimpot RP1, podendo ser calculada seguindo a fórmula descrita abaixo:

  • R1 = (Vout - 2,5) * 1880
Vout = Tensão em Volts e, R = Resistência em Ohms

Em nosso caso, o resistor que calcularemos será para 19V, para alimentar um notebook  em nosso carro:
  • RP1 = (19 - 2,5) * 1880
  • RP1 = 16,5 *1880
  • RP1 = 31,020 ou 31,02KΩ
Lembrando que o Trimpot está em série com o resistor R2, sendo assim, devemos subtrair o valor do resistor R2 que é de 2.200Ω, com o valor calculado, exemplo:
  • RP1 = 31,020Ω
  • R2 = 2,200Ω
Então:
  • 31,0202 - 2,200 =   28,820, ou 28,8KΩ
Esse é o valor que deve está regulado o Trimpot, RP1.
Mas, você pode está colocando um multímetro na saída e regular o mesmo para a tensão desejada.

Digrama Esquemático do Circuito

Na Figura 3 abaixo, temos o diagrama esquemático do circuito Conversor Booster, e a disposição dos componentes, é um circuito simples de se montar, mas é necessário dar atenção a montagem, por isso o conhecimento técnico necessário para montar esse circuito está entre o nível Intermediário ao avançado.
Fig. 3 - Conversor Booster Variável, entrada 12V saída 5 à 48V com CI UC3843

Lista de Componentes

  • Semicondutores
    • U1 ........ Circuito Integrado UC3842
    • Q1 ........ Transistor Mosfet NPN IRF3710
    • D1 ........ Diodo Schottky MBR10150

  • Resistores
    • R1 ........ Resistor 8.2KΩ (cinza, vermelho, vermelho, dourado
    • R2 ........ Resistor 2.2KΩ (vermelho, vermelho, vermelho, dourado
    • R3 ........ Resistor 4.7KΩ (amarelo, violeta, vermelho, dourado
    • R4 ........ Resistor 150KΩ (marrom, verde, amarelo, dourado
    • R5 ........ Resistor 10Ω (marrom, preto, marrom, dourado
    • R6 ........ Resistor 1KΩ (marrom, preto, vermelho, dourado
    • R7 ........ Resistor 10KΩ (marrom, preto, laranja, dourado
    • R8 ........ Resistor 0.08Ω (preto, cinza, prata, dourado
    • RP1 ..... Trimpot de 100KΩ

  • Capacitores
    • C1, C2, C8 ..... Capacitor Eletrolítico 3.300μF / 65V
    • C2, C3, C9 ..... Capacitor Poliéster/Cerâmico 100nF
    • C4 .................. Capacitor Poliéster/Cerâmico 2.2nF
    • C5 .................. Capacitor Poliéster/Cerâmico 150pF
    • C6 .................. Capacitor Poliéster/Cerâmico 330pF

  • Indutor
    • L1 .................. Indutor duplo 60uH *ver texto

  • Diversos
    • P1, P2......... Conector WJ2EDGVC-5.08-2P
    • F1 .............. Fusível de 10A soldável.
    • Outros ....... Placa Circuito Impresso, estanho, fios, etc.

A Placa de Circuito Impresso

Estamos disponibilizando os arquivos contendo a PCI, como ilustrado na Figura 4 abaixo, o Diagrama Esquemático, o PDFGERBER JPG, PNG, e disponibilizando um link direto para baixar gratuito e em um link direto, "MEGA".
Fig. 4 - PCI - Conversor Booster Variável, entrada 12V saída 5 à 48V com CI UC3843

Link direto para baixar

Clique no link ao lado para baixar os arquivos: Layout PCB, PDF, GERBER, JPG

Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Quaisquer dúvidas, sugestões, correções, por favor, deixe nos comentários abaixo, que em breve estaremos respondendo.

Se inscreva no nosso BlogClique Aqui FVM Learning!

Forte abraço.

Deus vos Abençoe
Shalom!

quarta-feira, 9 de fevereiro de 2022

Carregador Inteligente USB para Baterias de Lithium-Ion com CI MAX1555 + PCI

Fig. 1 - Carregador Inteligente USB para Baterias de Lithium-Ion com CI MAX1555 + PCI

Devido aos avanços tecnológicos, novos dispositivos exigem um fornecimento de energia constante, modelos diferentes com especificações diferentes que precisam atender às demandas de energia em larga escala.

Equipamentos de uso cotidiano como; Banco de energia portátil para viagens, Drones, Lanternas, Instrumentos musicais, Câmeras digitais, Equipamento de comunicação, Computadores de bolso, etc, todos exigem o uso de baterias ou banco de baterias. 

O que se sabe é que a tecnologia está mudando a maneira como as pessoas vivem sua vida diária através desses equipamentos. 

Para isso, há uma necessidade de se manter esses gadgets por mais tempos ligados as baterias, o que é um pouco preocupante quando não se tem um carregador otimizado para isso, e você termina que carregando as baterias de forma saturada, desgastando seus compostos químicos e trazendo degradação precoce das baterias.

Apresentamos a você um carregador portátil, inteligente e confiável, que executa o carregamento de sua bateria de forma constante e controlada, o que trás para as baterias uma vida útil bem maior, e ainda consegue manter a potência de fornecimento da bateria sempre constante, sem perda de corrente por degradação precoce. 

Discrição do CI MAX1555

O Circuito Integrado MAX1555 é um carregador de bateria de Ion-Lítio (Li+) de uma única célula a partir de fontes USB e ou Adaptadores externos AC.

Eles operam sem FETs ou diodos externos, e aceita tensões de entrada operacionais de até 7V

O limite térmico no chip simplifica o layout da PCI e permite uma ótima taxa de carga sem os limites térmicos impostos pela pior das hipóteses de bateria e tensão de entrada.  O MAX1555 está disponível em pacotes SOT23 finos de 5 pinos e operam na faixa de -40°C a +85°C.

Características 

  • Carga através do adaptador USB ou fonte externa CA
  • Comutação automática quando o Adaptador CA está conectado
  • Limitação Térmica On-Chip Simplifica com controle de corrente
  • Indicador de Status da Carga 
  • 5-Pin SOT23 Encapsulamento bem pequeno

O Circuito

O diagrama esquemático do circuito Carregador Inteligente USB para Baterias de Lithium-Ion está sendo mostrada na Figura 2 abaixo, é um circuito bastante simples, e o nível de conhecimento técnico para montar esse circuito, é básico à intermediário.

Por ser um circuito montado em placa SMD, torna o circuito um pouco difícil para quem não tem os equipamentos adequado.

É um circuito miniaturizado, o que deve facilitar a quem for montar em um encapsulamento de espaço mínimo, como um conector USB, ou mesmo ao lado da bateria, para quem deseja fazer um Power Bank por exemplo.
Fig. 2 - Carregador Inteligente USB para Baterias de Lithium-Ion com CI MAX1555

Funcionamento do Circuito

O circuito recebe dois tipos de fontes de alimentação, a primeira é pela porta USB, que pode ser de um computador, HUBs, carregador de celular, ou qualquer outra fonte USB 5V, e a segunda, é ligando diretamente alguma fonte de alimentação externa que tenha uma tensão entre 3.95V à 7V.
 
Com USB conectado, mas sem alimentação CC, a corrente de carga é ajustada para 100mA (máximo).  Isto permite o carregamento a partir de portas USBhubs USB, sem necessidade de comunicação por porta. 

Quando a alimentação CC é conectada, a corrente de carga é ajustada para 280mA tipicamente à 340mA máximo. Não são necessários diodos de bloqueio de entrada para evitar o esgotamento da bateria.

Quando se conecta a USB e a alimentação CC ao mesmo tempo, circuito inteligente escolherá a fonte de alimentação conectada. 

Por ter um carregamento controlado, quando os limites térmicos MAX1555 são atingidos, o carregador não se desligará, ele controlará o carregamento reduzindo progressivamente a corrente de carga, para uma corrente de hysteresis típica de 50mA.

O LED1 está conectado a pino CHG do CI, ele  é o indicador de estado de bateria, ele mantém-se aceso até que a bateria seja carregada completamente.

Lista de componentes

  • Semicondutor
    • U1 ............................ Circuito Integrado MAX1555
    • LED1 ....................... Led SMD de uso geral 

  • Resistor
    • R1 ............................. Resistor 470R (amarelo, violeta, marrom, ouro)

  • Capacitor
    • C1 ................... Capacitor Poliéster/Cerâmico 1uF ou 1000nF
       
  • Diversos
    • Outros ......... PCI, Fios, Soldas, Suporte para Bateria, Fonte e Etc.

Placa de Circuito Impresso - Download

Na Figura 3 logo abaixo, estamos disponibilizando a PCI em arquivos GERBER, PDF e JPEG, para você que deseja fazer a montagem mais otimizada, ou em casa, ou se preferir, em uma empresa que imprima a placa, você pode está baixando os arquivos gratuitamente em um link direto na opção de Download logo abaixo.
Fig. 3 - PCI Carregador Inteligente USB para Baterias de Lithium-Ion com CI MAX1555

Arquivos Para Baixar, Link Direto MEGA:

Clique Aqui! 

Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Qualquer dúvida, digita nos comentários que logos estaremos respondendo.

Se inscreva no nosso BlogClique Aqui FVM Learning!

Forte abraço.

Deus vos Abençoe
Shalom!

quinta-feira, 6 de janeiro de 2022

Carregador Automático de Bateria de Íon-Lítio 4.2V com CI LM358 + PCI

Fig. 1 - Carregador Automático de Bateria de Íon-Lítio 4.2V com CI LM358

Olá a todos!!!

No post de hoje, iremos montar um circuito Carregador Automático de Bateria de Íon-Lítio 4.2V com o Circuito Integrado amplificador operacional LM358, o circuito executa um carregamento automático, o  representa um vida útil para sua bateria e uma carga completa dando mais autonomia para as baterias. 

O circuito é bastante simples, utilizando componentes de baixo custo e fácil de se encontrar, e tudo isso de forma simples, utilizando poucos componentes externos.

O CI LM358

LM358 é um amplificador operacional duplo de baixa potência, utilizamos um dos seus amplificadores como comparador de tensão. A pinagem é compatível com o popular amplificador operacional duplo MC1558

Eles podem operar em tensões de alimentação tão baixas quanto 3,0 V ou tão altas quanto 32 V, com correntes quiescentes cerca de um quinto daquelas associadas ao MC1741 (em uma base por amplificador). 

A faixa de entrada do modo comum inclui a alimentação negativa, eliminando assim a necessidade de componentes de polarização externos em muitas aplicações. 

O Circuito

O circuito é bastante simples, emprega apenas um componente essencial, e dois complementares, são o CI LM358 e os transistores BC547B que é o transistor drive, e o TIP41 que é o transistor de controle de carga, temos também um regulador de tensão de referência formado pelo Diodo Zener com o Resistor R1.

Funcionamento

O diodo D1, é um diodo de proteção de inversão de tensão, ele funciona de modo que se a tensão de entrada for invertida, ele não deixa passar nada para o circuito, evitando a queima do componentes ou mesmo a explosão da bateria.

O Trimpot RP1 é quem regula a tensão de corte do circuito, é através dele que o CI LM358 recebe a tensão vinda do Trimpot e compara com a tensão estabilizada vinda do circuito formado pelo resistor R1 e D2 que é um diodo Zener de 3.3V, daí determina se a saída será ativada ou não.

O conjunto de Led são indicadores visuais, eles recebem a tensão de saída do CI seja ela positiva ou negativa dependendo do estado do comparador, que ativa o LED de carregando ou o LED de carga completa, que também envia esse mesmo sinal para o drive formado pelo transistor Q1 BC547B que envia para o transistor descarga Q2 TIP41 que aciona a carga na bateria.

O circuito completo encontra-se na Figura 2 abaixo, podemos visualizar o diagrama esquemático completo do Carregador Automático de Bateria de Íon-Lítio 4.2V com CI LM358 como podemos verificar, é um circuito simples, mas, assim mesmo devemos ficar atentos para não inverter nenhum componente, já que estamos falando de diodos, LEDs, transistores CIs, todos teem polaridades.

Fig. 2 - Diagrama Esquemático Carregador de bateria de lítio (Li-Ion) com LM358


O circuito carregador de Baterias de íons de lítio pode ser alimentado por uma tensão contínua de 5V vinda de um carregador de celular ou uma porta USB, que irá funcionar perfeitamente.

Calibração do Circuito

Quando ligamos a fonte de alimentação no circuito e inserimos a bateria, o circuito verifica o status de carregamento e, quando detecta uma carga abaixo do programado através do RP1, ele aciona o carregamento para completar a carga, e depois que a bateria está com a carga completa, ele dispara colocando o carregador em modo de repouso.

Para calibrar, é necessário utilizar um multímetro na saída do circuito e regular a tensão de saída para 4.1V

Para fazer isso, gire o Trimpot  para o centro, ligue o circuito na fonte de 5V, verifique a tensão na saída com o multímetro, depois se a tensão tiver menor que 4.1V ou 4.2V, gire até alcançar essa tensão, pois essa será a tensão de corte limite, ou seja quando a bateria alcançar essa tensão estando em carregamento, ele irá disparar e cortar a tensão na bateria. 

Lista de Componentes

  • CI 1 ----------- Circuito Integrado LM358N
  • R1, R6 -------- Resistor 1KΩ  (marrom, preto vermelho, dourado
  • R2, R3, R4 --- Resistor de precisão 680Ω (azul, cinza, marrom, dourado)
  • R5 ------------- Resistor 220Ω  (vermelho, vermelho, marrom, dourado
  • C1 ------------ Capacitor Eletrolítico  1uF / 16V
  • D1 ------------ Diodo de Cilício 1N5408G
  • ZD1 ---------- Diodo Zener de 3.3V 1N4728
  • LD1, LD2 --- Led 1 - Vermelho, Led 2 - Verde - 3mm
  • RP1 ---------- Trimpot de 10KΩ
  • P1, P2 ------- Conector WJ2EDGVC-5.08-2Ps
  • Diversos ----- Placa Circuito Impresso, estanho, fios, dissipador de calor, etc.

Download

Estamos dispondo para Download o link com os arquivos para impressão da placa de circuito impresso, são eles: Gerber, PDF layout, tudo isso com link direto para o Mega.
Fig. 3 - Placa de Circuito Impresso Carregador de bateria de Lítio com LM358


Pessoal, o trabalho é grande, escrever, montar, testar, elaborar a PCI, armazenar para baixar, tudo isso dá muito trabalho, e não cobramos nada por isso!

Então nos ajude a divulgar nosso trabalho, compartilha nas redes sociais, Facebook, Instagram, nos grupos de WhatsAppuma simples atitude sua, faz com que cresçamos juntos e melhoremos o nosso trabalho!

E por hoje é só, espero que tenham gostado!

Qualquer dúvida, digita nos comentários que logos estaremos respondendo.
Se inscreva no nosso Blog! Clique aqui - FVM Learning!
Forte abraço.

Deus vos Abençoe
Shalom!