FVM Learning

Nosso maior compromisso é compartilhar conhecimentos, somos simples mas não simplórios, astuto mas não pacóvio, nos posicionamos empenhados em mostrar o caminho para desmistificação do opróbrio em legítima defesa do conhecimento compartilhado. Eng. Jemerson Marques.

sexta-feira, 28 de fevereiro de 2020

Circuito Amplificador 170W em Bridge com Circuito Integrado TDA7294

Circuito Amplificador 170W em Bridge com Circuito Integrado TDA7294

Olá a todos!!!

No Post de hoje, nós iremos montar um amplificador com dois Circuitos Integrado TDA7294, em modo Bridge, pelo qual podemos está somando a potência de ambos os Circuitos Integrados, fazendo com que tenhamos uma potência total de 170W, dotado ainda de uma ótima qualidade sonora, com fonte de alimentação simétrica, e trabalhando em todas as faixas de frequência audíveis, o que pode fazer desse amplificador uma gama de aplicação sem precedentes. 
TDA7294 é um circuito integrado monolítico no pacote Multiwatt15, destinado ao uso como amplificador de classe de áudio AB em aplicações de campo Hi-Fi (estéreo doméstico, alto-falantes auto-alimentados, TV Topclass). Graças à ampla faixa de tensão e à alta capacidade de corrente de saída, ele é capaz de fornecer a mais alta potência em cargas de 4Ω e 8Ω, mesmo na presença de uma baixa regulagem da fonte, com alta rejeição de tensão de alimentação.
A função de bloqueio incorporada com atraso de ativação simplifica a operação remota, evitando a ativação e desativação de ruídos.

Aplicação em Ponte "Bridge"

O que iremos fazer aqui é uma aplicação em Ponte, ou seja, configuração em BRIDGE, na qual dois TDA7294 são usados, como mostra o diagrama esquemático da Figura 2.

Fig. 2 - Circuito Amplificador 170W  em Bridge com Circuito Integrado TDA7294
Nós já sabemos que o TDA7294, suporta caragas de 4Ω e 8Ω, mas... para essa aplicação em configuração Bridge, o valor da carga do Alto-Falante não deve ser inferior a  por motivos de dissipação e capacidade de corrente dos Circuitos Integrado.

As principais vantagens oferecidas por esta solução são:


  • Desempenho de alta potência com fornecimento limitador de nível de tensão.
  • Potência de saída consideravelmente alta, mesmo com altos valores de carga (ou seja, 16 Ohm).
  • Para um Alto-Falante com , Vs = ± 25V, a potência máxima de saída obtida é de 150 W, enquanto que com um Alto-Falante com 16Ω, Vs = ± 35V, a potência máxima é de 170 W.

Características

  • Range De Tensão Operacional (± 25v à ±35V)
  • Estágio de Saída DMOS
  • Alta Potência de Saída (Até 170W musical)
  • Funções de Muting / Stand-By
  • Sem ruído ao acionar o interruptor Ligar/Desligar
  • Sem Células Boucherot
  • Baixa distorção
  • Baixo ruído 
  • Proteção contra Curto-Circuito
  • Desligamento térmico

Lista de Peças

CI 1, CI 2 ---------------------- Circuito Integrado TDA7294
D1 ------------------------------ Diodo de Silício 1N4148
R1 ------------------------------- Resistor 20K (vermelho, preto, laranja)
R2 ------------------------------- Resistor 10K (marrom, preto, laranja)
R3 ------------------------------- Resistor 30K (laranja, preto, laranja)
R4, R5, R6, R7, R10 --------- Resistor 22K (vermelho, vermelho, laranja)
R8, R9 ------------------------- Resistor 680Ω (azul, cinza, preto)
C1, C2 ------------------------- Capacitor Cerâmico/poliéster 0.56μF
C3, C4 ------------------------- Capacitor Cerâmico/poliéster 0.22μF
C5, C6 ------------------------- Capacitor eletrolítico 2200μF
C7, C8, C9, C10 ------------- Capacitor eletrolítico 22μF
Diversos ----------------------  Placa Circuito Impresso, estanho, fios, etc.

Fonte de Alimentação

A fonte de alimentação irá depender de qual potência de saída você irá escolher, que também dependerá de quantos Ohms o seu alto-falante terá. Temos duas versões:

  • Versão 1 - Saída de 150W.
    • Alto-Falante deve ser de e a tensão máxima é para ±25V
  • Versão 2 - Saída de 170W.
    • Alto-Falante deve ser de 16Ω e a tensão máxima é para ±35V
Lembrando que para as duas versões, é utilizado uma fonte do tipo Simétrica, ou seja; alimentação [ +VCC  |  GND  | -VCC ]. Com uma corrente de pelo 6 Amperes.

E por hoje é só, espero que tenham gostado!!!
Qualquer dúvida, digita nos comentários que logos estaremos respondendo.

Se inscreva no nosso Blog!!! Click aqui - FVM Learning!!!

Forte abraço.

Deus vos Abençoe

Shalom


terça-feira, 25 de fevereiro de 2020

Circuito Amplificador Classe D 2.5W RMS baixa tensão

Circuito Amplificador Classe D 2.5W RMS baixa tensão com CI BD5460GUL

Olá a Todos!!!

No post de hoje, iremos apresentar um circuito amplificador Classe D de 2.5W, super simples de montar, por se tratar de um Circuito Integrado Amplificador monofônico com baixa tensão de alimentação e que entrega 2.5W de potência em 4 Ohms. O BD5460GUL é um amplificador classe D que foi desenvolvido para ser utilizado em; telefones celulares, dispositivos móveis, áudio portáteis, caixinhas Bluetooth, entre muitos outros. E suas vantagens além do seu tamanho, é que ele não requer a utilização do filtro LC na saída do alto-falante, e o número de componentes externos são apenas três.
É adequado para a aplicação de unidades que são alimentadas por pilhas ou baterias, devido à alta eficiência e baixo consumo de energia.
Além disso, a corrente de repouso é de 0µA (tip.) E transições rápidas do modo de espera para ativo com pouco ruído pop. O que torna ele apropriado para aplicativos que alternam repetidamente entre em espera e ativo.

Características

  • Nenhum filtro LC necessário
  • Apenas três componentes externos
  • Alta potência 2.5W / 4Ω / BTL (VDD = 5V, RL = 4Ω, THD + N = 10%, tip.)
  • Alta potência 0.85W / 8Ω / BTL (VDD = 3.6V, RL = 8Ω, THD + N = 10%, tip.)
  • Ganhe 6dB
  • Entrada digital analógica / saída digital PWM
  • Circuito de supressão de ruído pop
  • Função de espera incorporada
  • Circuito de proteção (proteção curta [recuperação automática sem ciclo de energia], desligamento térmico, bloqueio de subtensão)
  • Pacote muito pequeno 9-Bump WL-CSP (1.6 * 1.6 * 0.55mm MÁXIMO)

Aplicações

  • Telefones celulares
  • Pré-amplificador
  • Aplicações eletrônicas móveis
  • Amplificador para Headphone
  • Caixas Bluetooth
  • Retorno para Headphone
O diagrama esquemático do Circuito Amplificador Classe D 2.5W RMS baixa tensão com CI BD5460GUL, está disposto nas figuras abaixo, temos duas configurações de entrada,  na figura 2, temos o diagrama esquemático do circuito com entada diferencial.
Fig. 2 -  Circuito Amplificador Classe D 2.5W RMS baixa tensão Entrada Estéreo

Na figura 3 temos o circuito em modo entrada mono, é uma montagem bastante simples, com poucos componentes externos para se montar. 
Fig. 3 -  Circuito Amplificador Classe D 2.5W RMS baixa tensão Entrada Mono

Lista de Materiais

CI 1 ------------------------- Circuito Integrado BD5460GUL
C1, C2 ---------------------- Capacitor Eletrolítico 0.1uF
C3 --------------------------- Capacitor Eletrolítico 10uF
Outros ---------------------- Fios, Soldas, PCB e Etc.

E por hoje é só, espero que tenham gostado!!!


Qualquer dúvida, digita nos comentários que logos estaremos respondendo.


Se inscreva no nosso Blog!!! Click Aqui - FVM Learning!!!
Forte abraço.

Deus vos Abençoe
Shalom

quarta-feira, 5 de fevereiro de 2020

Circuito Amplificador HI-FI para Fone de Ouvido estéreo de 35mW com CI LM4910

Circuito Amplificador HI-FI para Fone de Ouvido estéreo de 35mW com CI LM4910

Olá a Todos!!!

No post de hoje, iremos apresentar um circuito amplificador de alta qualidade HI-FI para Fone de Ouvido estéreo de 35mW com Circuito Integrado LM4910, e tudo isso com pouquíssimo componentes externos.
O LM4910 é um amplificador de potência de áudio projetado principalmente para aplicativos de fones de ouvido em aplicativos de dispositivos portáteis. Ele é capaz de fornecer 35mW de potência média contínua a uma carga de 32Ω com menos de 1% de distorção (THD + N) de uma fonte de alimentação de 3,3VDC.
O LM4910 utiliza uma nova topologia de circuito que elimina capacitores de acoplamento de saída e capacitores de bypass de meia alimentação. O LM4910 contém circuitos avançados de pop e clique, que eliminam ruídos causados ​​por transientes que, de outra forma, ocorreriam durante a ativação e desativação.
Os amplificadores de potência de áudio Boomer foram projetados especificamente para fornecer potência de saída de alta qualidade com uma quantidade mínima de componentes externos. Como o LM4910 não requer capacitores de acoplamento de saída, capacitores de bypass de meia fonte ou capacitores de auto-inicialização, é ideal para aplicações portáteis de baixa potência, onde o espaço e o consumo de energia são os principais requisitos.
O LM4910 possui um modo de desligamento de baixo consumo de energia, ativado acionando o pino de desligamento com lógica baixa. Além disso, o LM4910 possui um mecanismo interno de proteção contra desligamento térmico. O LM4910 também é estável em ganho de unidade e pode ser configurado por resistores externos de ajuste de ganho.

Características

  • Elimina capacitores de acoplamento de saída do amplificador de fone de ouvido
  • Elimina o capacitor bypass de meia alimentação
  • Os circuitos avançados de clicar e clicar elimina ruídos durante a ativação e desativação
  • Modo de desligamento de corrente ultra baixa
  • Unidade de ganho estável
  • Operação 2.2V - 5.5V
  • Disponível em pacotes MSOP, LLP e SOIC que economizam espaço

Aplicações

  • Smartphones
  • PDAs
  • Retorno para Headphone
Na figura 2 logo abaixo, temos o diagrama esquemático do circuito Circuito Amplificador HI-FI para Fone de Ouvido estéreo de 35mW com CI LM4910, é uma montagem bastante simples, com poucos componentes externos para se montar. A entrada de áudio é estéreo dois canais, e você pode estar  colocando um Plug P10 fêmea estéreo ou um Plug P2 fêmea estéreo, no pino 3 do LM4910 temos o pino que aciona o MUTE do sistema amplificador, você pode está aplicando a tensão de entrada positiva nele para acionar o MUTE, ou desligando ela para deixar o sistema no estado normal de funcionamento.  
Fig. 2 - Circuito Amplificador HI-FI para Fone de Ouvido estéreo de 35mW com CI LM4910

Lista de Materiais

CI 1 ------------------------- Circuito Integrado LM4910 
R1, R2, R3, R4 ------------ Resistor 20K
C1, C2 ---------------------- Capacitor Eletrolítico 0.39uF
C3 --------------------------- Capacitor Eletrolítico 1uF
Outros ---------------------- Headphone, Fios, Soldas e Etc.

E por hoje é só, espero que tenham gostado!!!


Qualquer dúvida, digita nos comentários que logos estaremos respondendo.


Se inscreva no nosso Blog!!! Click Aqui - FVM Learning!!!
Forte abraço.

Deus vos Abençoe
Shalom


segunda-feira, 27 de janeiro de 2020

Circuito Transmissor de FM com Transistor BF494

Circuito Transmissor de FM com Transistor BF494

Olá a Todos!!!

Fig. 1 - Transmissor de FM  com Transistor BF494
No post de hoje, iremos apresentar um simples circuito transmissor de Frequência Modulada FM utilizando um só transistor de saída o BF494, que tem uma potência de transmissão de aproximadamente 0.3W, com um alcance que pode chegar a mais de 100m de distância, dependendo das barreiras, e tudo isso com um único transistor, o circuito oscilador tem um range de frequência que pode ser sintonizado na faixa de Freqüência Modulada, FM entre 88 à 108 Mhz, o circuito é bastante estável, e podemos utiliza-lo como um microfone sem fio, um transmissor para rádio testes, link para transmitir audio e etc. e tudo isso com uma ótima qualidade de sonora.
O circuito transmissor de FM Frequência Modulada apresentado, é um dispositivo sem fio que opera em uma faixa de alta frequência, ele é capaz de transmitir sinais de audio para a atmosfera através de ondas eletromagnéticas, e pode ser recebido por um circuito receptor de FM sintonizado na mesma frequência que o transmissor está a operar, e podemos reproduzir sinais de; músicas, voz, instrumentos musicais e etc.,  no receptor de FM.

Características

  • Alta sensibilidade de captação de audio
  • Tensão de alimentação de 3 à 9V 
  • Circuito simples de montar
  • Alcance média em condição favorável 100m
  • Alta sensibilidade na entrada

Obs. Existem Leis que dizem respeito a telecomunicação, não utilize equipamentos de telecomunicação sem a autorização das entidade responsável pela transmissão de Rádio Frequências. Nosso site ensina eletrônica aplicada a vários seguimentos, tudo isso para incrementar o conhecimento, não apoiamos qualquer tipo de operação ilegal. Para qualquer operação com RF, entre e certifique-se da legalização no órgão responsável. ANATEL - Agência Nacional de Telecomunicações.


Aplicação

  • Transmissor de audio
  • Link de audio para instrumentos
  • Microfones sem fios
  • Microfone Espião
  • Rádio de FM caseira
Na figura 2 logo abaixo, temos o diagrama esquemático do circuito transmissor de FM, é uma montagem bastante simples, com poucos componentes para se montar. A modulação do audio é estabelecida através do microfone de eletreto, você pode também retirar o resistor 1 de 4.7K e colocar um Plug P10 fêmea por exemplo, para estar utilizando com um instrumento musical como uma guitarra, um baixo ou cavaquinho ou qualquer outro instrumento que você queira deixá-lo sem fio.
O ajuste da frequência desse transmissor é dada através do ajuste de trimmer CV1. A bobina L1 deve ter de 4 a 5 voltas de fio esmaltado 22 AWG com diâmetro de 1 cm com núcleo de ar, a antena pode ser um pedaço de fio rígido com um comprimento entre 15 a 40cm, e deve ser soldada próximo ao meio da bobina, a partir da segunda bobina depois do coletor do transistor, e todos os capacitores são de cerâmicos.  
Fig. 2 - Diagrama esquemático Transmissor de FM  com Transistor BF494

Lista de Materiais

T 1 ------------------- Transistor NPN  BF494
R1 -------------------- Resistor 4.7K
R2 -------------------- Resistor 8.2K
R3 -------------------- Resistor 5.6K
R4 -------------------- Resistor 47Ω
C1 ------------------- Capacitor cerâmico/poliéster 100nF
C2 ------------------- Capacitor cerâmico/poliéster 10nF
C3 ------------------- Capacitor cerâmico 5.6pF
C4 ------------------- Capacitor cerâmico/poliéster 220nF
Mic ------------------ Microfone de Eletreto
CV1 ----------------- Trimmer porcelana 3.3pF
Bobina -------------- Ver texto
Outros -------------- Fios, Soldas e Etc.


E por hoje é só, espero que tenham gostado!!!


Qualquer dúvida, digita nos comentários que logos estaremos respondendo.


Se inscreva no nosso Blog!!! Click Aqui - FVM Learning!!!
Forte abraço.

Deus vos Abençoe
Shalom


quinta-feira, 23 de janeiro de 2020

Controlando LEDs com dois ESP8266 utilizando Protocolo ESP-NOW

ESP-NOW - Controlando LEDs com dois ESP8266 utilizando Protocolo ESP-NOW

Olá a Todos!!!

No post de hoje, iremos fazer a comunicação entre dois ESP8266, uma conexão direta sem roteadores executando a conexão, iremos acionar duas cargas, que serão simuladas utilizando dois LEDs, utilizaremos o protocolo de comunicação ESP-NOW. Essa protocolo foi desenvolvido pela fabricante Chinesa ESPRESSIF. Esse protocolo tem sido bastante utilizado em muitos Gadgets como: Mouses sem fios, teclados sem fio, sensores de incêndios Wireless, controles remotos, etc. por ter uma conexão rápida e direta e com pouco consumo de energia.
Se você não conhece esse protocolo, ou deseja saber mais sobre ele, recomendamos à você dar uma olhadinha em nosso POST que explica o código detalhando por etapas e cada parte dos processos do código:
O que é ESP-NOW - E como Funciona? - Código exemplo explicado!!!

O que iremos fazer é, utilizar a biblioteca espnow.h, que é uma biblioteca desenvolvida para ESP8266, e o motivo é bastante simples, uma grande maioria de pessoas teem o ESP8266, e códigos utilizando a biblioteca espnow.h que é a biblioteca utilizada no ESP8266, são bastante difíceis, o mais comum de se encontrar são códigos que utilizam a biblioteca esp_now.h biblioteca utilizada no ESP32, mas, a grande maioria ainda utilizam o ESP8266 assim como eu, tenho o ESP32, mas utilizo mais o ESP8266.

O que vamos precisar

  • Precisaremos ter instalado a biblioteca espnow.h na IDE Arduíno. Se você não o fez, ou estar em dúvidas se já está instalado, confere no nosso post, como instalar a biblioteca espnow.h na IDE Arduíno. 
  • 2 - ESP8266
  • 4 - LEDs "2 opcionais"
  • 2 - Chave Micro-Switch
  • Protoboards, Fios rabichos, etc.
A montagem é bastante simples, ficando teremos apenas dois LEDs no Receiver, e duas Chaves com Dois LEDs no Controle.
No Controle, os LEDs estão ligados nas GPIOs: D2 e D3, e as MicroSwitchs estão ligados nas GPIOs D1 e D4, você pode está modificando essas GPIOs, para o que mais se adeque em seu projeto, não vai fazer diferença alguma se mudarmos, só não podemos esquecer de ligá-la na porta correta e modificar na Sketch.
No Receiver, os LEDs estão ligados nas GPIOs: D0 e D1, como já mencionado acima, você pode também estar modificando diacordo com o seu projeto. Logo abaixo temos os dois códigos para completos para você poder acompanhar.

Código do Controle

//=================================================================================================//
// MASTER                                                                                          //
// Controlling LEDs with Two ESP8266 Uses ESP-NOW Protocol                                         //
// Edited and Adapted by: Engineer Jemerson Marques, On: 22.12.2019 - FVM Learning website         //
// Available at: https://www.fvml.com.br and on Youtube channel                                    //
// https://www.youtube.com/c/FVMLearning - I hope you have fun - Good luck                         //
//-------------------------------------------------------------------------------------------------//

#include <ESP8266WiFi.h>
extern "C" {
#include <espnow.h>
}
// This is the slave MAC Address which receives the data
 uint8_t mac[] = {0x5C, 0xCF, 0x7F, 0x4C, 0x82, 0x5C}; //AP MAC SLAVE'S ADDRESS

  #define WIFI_CHANNEL 4
  int prevstate_1 = LOW;
  int prevstate_2 = LOW;

// Data structure, must be the same for the slave

struct __attribute__((packed))DataStruct {
  char text[32];
};
    DataStruct button_1;
    DataStruct button_2;

//=====================================================================================================
void setup() {
  pinMode(D1, INPUT_PULLUP);
  pinMode(D4, INPUT_PULLUP);
  pinMode(D2, OUTPUT);
  pinMode(D3, OUTPUT);

  Serial.begin(115200); Serial.println();
  Serial.println("Starting EspnowController.ino");
  WiFi.mode(WIFI_STA); // Station mode for esp-now controller
  WiFi.disconnect();
  Serial.printf("This mac: %s, ", WiFi.macAddress().c_str());
  Serial.printf("slave mac: %02x%02x%02x%02x%02x%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  Serial.printf(", channel: %i\n", WIFI_CHANNEL);
  if (esp_now_init() != 0)
  {
    Serial.println("*** ESP_Now initialization failed");
  }
  esp_now_set_self_role(ESP_NOW_ROLE_CONTROLLER);
  esp_now_add_peer(mac, ESP_NOW_ROLE_SLAVE, WIFI_CHANNEL, NULL, 0);
  strcpy(button_1.text, "Button 01 pressed");
  strcpy(button_2.text, "Button 02 pressed");
  Serial.println("Setup finished");
}

//======================================================================================================

void loop() {
  sendData();
}

//======================================================================================================
void sendData() {

  int currentstate_1 = digitalRead(D4);
  if (prevstate_1 != currentstate_1) {
    if (currentstate_1 == LOW) {
      uint8_t bs[sizeof(button_1)];
      memcpy(bs, &button_1, sizeof(button_1));
      esp_now_send(mac, bs, sizeof(button_1));
      Serial.println(button_1.text);
      digitalWrite(D2, !digitalRead(D2));
    }
  } prevstate_1 = currentstate_1;

  int currentstate_2 = digitalRead(D1);
  if (prevstate_2 != currentstate_2) {
    if (currentstate_2 == LOW) {
      uint8_t bs[sizeof(button_2)];
      memcpy(bs, &button_2, sizeof(button_2));
      esp_now_send(mac, bs, sizeof(button_2));
      Serial.println(button_2.text);
      digitalWrite(D3, !digitalRead(D3));
    }
  } prevstate_2 = currentstate_2;
}

//========================================== www.fvml.com.br ===========================================

Código do Receiver

//=================================================================================================//
// SLAVE                                                                                          //
// Controlling LEDs with Two ESP8266 Uses ESP-NOW Protocol                                         //
// Edited and Adapted by: Engineer Jemerson Marques, On: 22.12.2019 - FVM Learning website         //
// Available at: https://www.fvml.com.br and on Youtube channel                                    //
// https://www.youtube.com/c/FVMLearning - I hope you have fun - Good luck                         //
//-------------------------------------------------------------------------------------------------//

#include <ESP8266WiFi.h>
extern "C" {
#include <espnow.h>#include <user_interface.h>
}
 uint8_t mac[] = {0x5C, 0xCF, 0x7F, 0x4C, 0x82, 0x5C}; //AP MAC SLAVE'S ADDRESS

//=====================================================================================================
  int Led1 = D0;
  int Led2 = D1;

void initVariant() {
  WiFi.mode(WIFI_AP);
  wifi_set_macaddr(SOFTAP_IF, &mac[0]);
}

//=====================================================================================================

#define WIFI_CHANNEL 4
// Must match the controller structstruct __attribute__((packed))DataStruct {
  char text[32];
unsigned int time;};

DataStruct receivedData;
//=====================================================================================================
void setup() {
  Serial.begin(115200); Serial.println();
  Serial.println("Starting EspnowSlave.ino");  Serial.print("This node AP mac: "); Serial.println(WiFi.softAPmacAddress());  Serial.print("This node STA mac: "); Serial.println(WiFi.macAddress());  pinMode(Led1, OUTPUT);
  pinMode(Led2, OUTPUT);

  if (esp_now_init() != 0){
    Serial.println("*** ESP_Now init failed");    while (true) {};
  }
  esp_now_set_self_role(ESP_NOW_ROLE_SLAVE);
  esp_now_register_recv_cb(receiveCallBackFunction);
  Serial.println("End of setup - waiting for messages");}

//======================================================================================================

void loop() {
}

//======================================================================================================
void receiveCallBackFunction(uint8_t *senderMac, uint8_t *incomingData, uint8_t len) {
  memcpy(&receivedData, incomingData, sizeof(receivedData));

  String DataCompare = String(receivedData.text);

  if(DataCompare == "Button 01 pressed"){
  digitalWrite(Led1, !digitalRead(Led1));
  Serial.println(" Message = " + DataCompare);
 }
  if(DataCompare == "Button 02 pressed"){
  digitalWrite(Led2, !digitalRead(Led2));
  Serial.println(" Message = " + DataCompare);
   
  }
}

//========================================== www.fvml.com.br ===========================================
Logo abaixo temos um link com os arquivos dos códigos do Controle como do Receiver, nós aconselhamos a você baixar e não copiar no código acima, pois pode vir com algum erro de acentuação ou qualquer outra coisa, então disponibilizamos o link para baixar.

Click no Botão abaixo para baixar os arquivos: 

Você pode também está acompanhando esse post em nosso canal do youtube, é uma forma de você acompanhar o funcionamento do mesmo.


E por hoje é só, espero que tenham gostado!!!

Qualquer dúvida, digita nos comentários que logos estaremos respondendo.

Se inscreva no nosso Blog!!! Click Aqui FVM Learning!!!

Forte abraço.

Deus vos Abençoe

Shalom


sexta-feira, 17 de janeiro de 2020

Circuito Amplificador Classe D 3.7W com CI MAX98306

Circuito Amplificador Classe D 3.7W com CI MAX98306

Olá a Todos!!!

Fig. 1 - Circuito Amplificador Classe D
No post de hoje, iremos apresentar um amplificador estéreo de 3,7W Classe D que oferece desempenho de áudio tão bom, que pode ser confundido com um Classe AB, no entanto com a eficiência de um Classe D. É um circuito de fácil construção, devido ao pequeno número de componentes externos.
Este dispositivo oferece cinco configurações de ganho selecionáveis (6dB, 9dB, 12dB, 15dB e 18dB) definidas por uma única entrada de seleção de ganho (GAIN).
Os circuitos de controle de limitação de emissões ativas, taxa de borda e overshoot combinados com um esquema de modulação por espectro de espalhamento sem filtro (SSM) fornecem excelente desempenho EMI, eliminando a necessidade de filtragem de saída encontrada nos dispositivos tradicionais Classe D. Esses recursos reduzem a contagem de componentes do aplicativo.
A corrente de repouso do Circuito integrado é de 2,0mA com uma fonte de 3,7V aumenta a vida útil da bateria em aplicações portáteis.
O Circuito Integrado MAX98306 está disponível em um pacote TDFN de 14 pinos (3mm x 3mm x 0,75mm) especificado na faixa de temperatura estendida de -40NC a + 85NC.

Características principais

  • Potência de saída 3.7W a 3Ω, 10% THD, 1.7W a 8Ω, 10% THD, com alimentação de 5V
  • Passa o limite de EMI não filtrado com até 309cm de cabo do alto-falante
  • PSRR alto de 83dB a 217Hz
  • Modulação por Espectro de Espalhamento e Limitação de Emissões Ativas
  • Cinco ganhos selecionáveis por pinos
  • Excelente supressão de clique e pop
  • Proteção térmica e de sobrecorrente
  • Modo de desligamento por corrente baixa
  • Economia de espaço, 3 mm x 3 mm x 0,75 mm, TDFN de 14 pinos

                  Aplicações

                  • Smartphones
                  • Comprimidos
                  • Telefone celular
                  • Alto-falantes acessórios
                  • Leitores MP3
                  • Leitores de áudio portáteis
                  • Telefones VoIP
                  Na Figura 2 temos o diagrama esquemático do circuito amplificador de audio classe D, para podermos acompanhar as montagens e a disposição dos componentes, como podemos visualizar, esse circuito só tem 3 componentes externos, que são dois capacitores de desacoplamento na entrada, e temos também um capacitor de filtro na conexão de tensão que serve para evitar interferências na linha de tensão.
                  Fig. 2 - Diagrama do Circuito Amplificador Classe D

                  E por hoje é só, espero que tenham gostado!!!

                  Qualquer dúvida, digita nos comentários que logos estaremos respondendo.

                  Se inscreva no nosso Blog!!! Click Aqui FVM Learning!!!

                  Forte abraço.

                  Deus vos Abençoe

                  Shalom